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ABSTRACT 

Interface guidelines encourage designers to include shortcut 

mechanisms that enable high levels of expert performance, 

but prior research has demonstrated that few users switch to 

using them. To help understand how interfaces can better 

support a transition to expert performance we develop a 

framework of the interface and human factors influencing 

expertise development. We then present a system called 

Blur that addresses three main problems in promoting the 

transition: prompting an initial switch to expert techniques, 

minimising the performance dip arising from the switch, 

and enabling a high performance ceiling. Blur observes the 

user‟s interaction with unaltered desktop applications and 

uses calm notification to support learning and promote 

awareness of an alternative hot command interface. An 

empirical study validates Blur‟s design, showing that users 

make an early and sustained switch to hot commands, and 

that doing so improves their performance and satisfaction.  
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ACM Classification Keywords 
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General Terms 
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INTRODUCTION 

Windows, Icons, Menus, Pointer (WIMP) interfaces 

mediate most communication between humans and 

computers. Their success is partly due to their natural 

support for novice users – the phrase „see and point versus 

learn and remember‟ [38] describes how novices benefit 

from using visual search for salient controls, rather than 

retrieving command names from memory or manuals. 

However, the very mechanisms that make WIMPs effective 

for novices fail to support users as they become more 

experienced, and they can trap users in a „beginner mode‟ 

of interaction that has a low performance ceiling. The 

richness and power of human perception, cognition, and 

motor action is then constrained to relatively slow and 

laborious action. Conversely, interfaces designed for 

experts (e.g., keyboard shortcuts or command-lines) allow 

high performance ceilings, but only after extensive training.  

Although it is clear that these expert interfaces can provide 

performance advantages [34], their success in practice has 

been limited, and several researchers have reported that 

users fail to switch to expert interface methods (e.g., [3, 7, 

27]). Furthermore, while there has been considerable 

research into interfaces for either novices or experts, there 

has been relatively little on the transition to expertise. 

We therefore form a framework encapsulating the factors 

influencing expertise development, with a focus on those 

affecting the switch to expert interface mechanisms. These 

factors include lack of knowledge about the availability or 

the performance benefits of the alternative UI; concern 

about the time or effort required to make the switch; the 

prevalence of satisficing [40], in which „good enough‟ 

strategies are maintained; and fears about the drop in 

performance that can occur because the user must „start 

from scratch‟ with the new interface. This drop in 

performance (called „the dip‟) is particularly important, 

because it can deter switching in the first place, but also 

because it negatively affects the user‟s first impressions. 

The framework suggests that any system attempting to 

support a switch to expert interface mechanisms should 

have three goals: first, maximize the likelihood that the user 

will initiate a switch to the expert modality; second, 

minimize the cost of doing so; and third, enable a high 

performance ceiling to rapidly reward use. 

To investigate supporting these goals, we have developed a 

new system (called Blur) that uses calm notification and hot 

commands to support a transition from WIMP interaction to 

a more efficient command-based interface. Through calm 

notifications, Blur provides an immediate and bidirectional 

translation between WIMP and command line (CLI) 

methods – WIMP inputs are immediately displayed as 

equivalent CLI outputs, promoting learning and awareness 

of the CLI. Through the hot commands mechanism, Blur 

enables CLI control of the interface without altering the 

underlying GUI, thereby supporting gradual exploration of 

the CLI without requiring users to completely abandon use 

of familiar WIMP interaction. 
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Figure 1. Performance curves characterising intra and 

intermodal performance improvement. Note the postulated 

performance dip when switching modalities.  
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We carried out a study using repetitive tasks in PowerPoint 

to see how well Blur supports users‟ transition to the expert 

CLI. Results showed that Blur supported users‟ transition to 

the expert interface much better than standard shortcut keys 

– all 20 participants switched to Blur within the first three 

trials, whereas none switched to built-in Alt-shortcuts. The 

study also showed that Blur‟s performance dip was small 

and that its ultimate efficiency was faster than the WIMP 

and shortcut interfaces.  

Blur demonstrates a general and reproducible strategy for 

supporting users‟ transition from a WIMP interface to a 

CLI-style interface. Blur provides both a mechanism for 

learning and promoting the expert interface while the user 

carries out WIMP actions, and a means for allowing gradual 

exploration and adoption of the higher-performance CLI 

interaction. Specifically, we make three contributions on 

expertise development: 

 A framework of issues influencing expertise development 

within and across interface mechanisms.  

 Design of Blur, which promotes the transition to expert 

interaction through calm notification and hot commands.  

 Empirical evidence demonstrating Blur‟s success. 

FRAMEWORK & REVIEW OF INTERFACE EXPERTISE 

Learnability is consistently identified as a critical 

component of usability [13, 31, 37], but as Grossman et al. 

[18] observe, there is little agreement over how it can be 

defined or measured. Grossman et al. [18] provide a 

comprehensive review of definitions, metrics, and 

methodologies for assessing learnability, and they suggest a 

new protocol for measuring it. However, evaluation 

methodologies are applied after an interface has been 

designed, and current best-practice guidelines for 

supporting expertise are often high level generalisations, 

such as „provide shortcuts‟ [31] that provide little direct 

guidance or insight into underlying design issues.  

This section presents a framework of the interface and 

human factors influencing expertise development. Our 

focus is on issues of how interfaces can support users‟ 

transition to expertise, rather than on fundamental issues in 

human skill acquisition and strategic thinking; see [1] for a 

review of human skill acquisition and [3] for an analysis of 

the development of expert interaction strategies. 

Intramodal and Intermodal expertise development 

The framework adapts Newell and Rosenbloom‟s [30] 

power law of practice, using it as a qualitative guideline for 

characterisation, rather than a mathematical model. We use 

the power curve shown on the left side of Figure 1 to 

characterise intramodal expertise development: how user 

performance improves over time with a single interaction 

modality, subdividing the curve into three segments for 

initial performance, extended learnability, and ultimate 

performance. These three stages are suggestive of 

Anderson‟s [1] model of skill acquisition, which identifies 

cognitive, associative, and autonomous stages in which 

initial models are formed, followed by establishment of 

associations between concepts, finally leading to the 

development of autonomous skills.  

Many interfaces, however, support more than one 

interaction mode for the same task. For our purposes modes 

are distinguished by the interaction mechanics used to 

control the interface. For example, menu items can be 

selected by direct clicking with the mouse, or by activating 

their associated hotkeys using the keyboard; similarly, files 

and file hierarchies can be manipulated via direct 

manipulation (e.g. using Windows Explorer or the Desktop) 

or through command line alternatives (such as the file path 

entry or a command window). 

Our framework characterises intermodal expertise 

development by combining two power law curves (shown 

on the left and right sides of Figure 1). This characterisation 

postulates that users are likely to suffer a performance dip 

when switching to a new modality, even if it offers a higher 

ultimate performance ceiling. For example, a user who 

frequently uses the „bulleted lists‟ toolbar item may decide 

to learn the keyboard shortcut, spending time to determine, 

memorise, and make autonomous its key sequence.  

While the curve characterises the user‟s actual performance 

when switching modalities, the user‟s perception of future 

performance critically influences whether the modality 

switch is made – if users perceive that an interface will be 

hard to learn, temporarily slow, or ultimately inefficient 

they will ignore it, and thus never attain the high 

performance ceiling it actually enables.  

Figure 2 summarises the properties of the intra and 

intermodal performance curves, and the interface and 

human factors affecting them, which are described in the 

following sections. The right hand side of Figure 2 also 

shows the techniques that our system, called Blur, uses to 

influence expertise development. We describe Blur and its 

relationship to the framework later in the paper.  

Review of intramodal expertise development 

Initial performance (intercept) 

Interface design for the initial stages of learning is strongly 

promoted in most usability guidelines [13, 31, 32, 37]. At 

this stage, users are unfamiliar with the interface, and must 



 

Figure 2. Summary facets of intra and intermodal expertise 

development, and the human and interface factors affecting 

them. Blur’s mapping to the framework is described later.  
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rely on their prior experiences, visual search, and 

recognition to find the commands they need.  

Mappings and metaphors [31, 33] promote initial interface 

familiarity, but supporting such mappings in command 

languages is difficult because of the variability in words 

used to describe actions [26]. Furnas et al. [15] describe 

how this vocabulary problem can be reduced through 

aliasing. In hotkey assignment creating meaningful 

mappings is further complicated by the limited expressive 

capacity of the input language: once „P‟ is assigned to 

„Print‟, for example, „Paste‟, „Previous‟, etc., must be 

assigned additional modifier keys or less symbolic letters.  

Visibility and ‘ready to hand’. The notion that controls 

should be visible to be learned is also well expressed in 

most usability guidelines, but the corollary of making 

novice things visible is that expert things are often 

suppressed, reducing the likelihood that they will be 

discovered. A related concept is that appropriate interface 

controls should be „ready to hand‟ [23], where controls and 

feedback are available for use but not obstructing task 

completion. Dyck et al. [14] observe that many computer 

games achieve the dual objectives of availability without 

obstruction through „calm messaging‟, using transient text, 

animation, and audio.  

Size of the command set. Large command vocabularies are 

likely to take longer to learn than small ones. Carroll and 

Carrithers [6] exploited this effect with their „Training 

Wheels‟ interfaces, which intentionally reduced the 

vocabulary size to aid learning. Related ideas were recently 

pursued with „multi-layer interfaces‟ [39]. 

Extended learning (gradient) 

Several factors influence the rate at which performance 

increases after initial familiarisation. Our review focuses on 

interface techniques that improve the efficacy of recall and 

on assisting users in establishing a good vocabulary. 

Effortful learning. Psychology researchers have proposed 

that “deeper” cognitions, which take longer to process, 

result in stronger memories [10, 35], and similar effects 

have been demonstrated with interfaces [8, 17]. However, 

explicitly manipulating the effort of interaction is risky as 

users are prone to frustration when training is too difficult 

and boredom when activities are mundane.  

Incidental learning to extend vocabulary. Psychology 

literature also suggests that users should learn interface 

components as a side effect of their display while using 

other components. Shelton [36] showed that subjects‟ 

memory in a paired-associate learning task was improved 

simply by prior exposure to the stimuli. Jones [22] therefore 

hypothesised that hypertext browsing would result in 

greater incidental learning than indexed search (due to 

exposure to content), but experiments failed to find 

significant differences.  

Ultimate performance (asymptote) 

The final characteristic of the intramodal curve is the 

asymptote, or performance ceiling. There is extensive 

literature on supporting and understanding expert interface 

performance (although it is largely independent of the 

processes enabling its attainment). In particular, the seminal 

work of Card, Moran and Newell [5] provides strong 

predictive models and empirical evidence of „expert 

performance of routine tasks‟, including analysis of one 

user who repeated the same editing task thousands of times 

to study progression to automaticity. Five interface 

characteristics for high performance ceilings follow:  

Flat command structures. GUIs typically contain more 

controls than can be easily displayed at once, necessitating 

interface partitions such as windows, tabs, and menu 

hierarchies. Navigating through these partitions takes time, 

and consequently there are potential performance benefits 

in flattening the command structure to make more items 

accessible at once. Commands issued by CLIs and hotkeys 

are exemplars as they have global interface scope (e.g. 

<Ctrl>-C executes „copy‟ regardless of the interface state). 

Several research and commercial systems have used CLIs 

to improve interface performance: e.g., Quicksilver
1
, 

Spotlight
2
, Enso

3
, and GEKA [21]. Although empirical 

results for CLI benefits over GUIs have been mixed (e.g. 

[42]), it is widely accepted that CLIs enable higher 

efficiency, and power users are strong advocates (e.g. [2]).  

Terse and expressive. Powerful interfaces communicate a 

lot of meaning in rapidly expressed actions. For example, a 

single alphabetic character can discriminate 26 commands, 

or 52 with case sensitivity; increasing to 2704 with two 

case-sensitive characters. However, there is often a tension 

between supporting terse, expressive power and meaningful 

mappings: for example, Alt-shortcuts in Office 2007 allow 

access to most controls, but they are abstract and hard to 

remember (e.g, „<Alt> n, nu, t‟ inserts a page number).  

                                                           

1
 http://www.blacktree.com 

2
 http://support.apple.com/kb/HT2531 

3
 http://humanized.com 



 

Revisitation/history support. Users‟ interactive behaviour is 

often repetitive (e.g., command use [16] and web navigation 

[41]), and interfaces can aid efficiency by explicitly 

supporting repetition. For example, web browser URL 

address bars and the Google search box memorise previous 

activities and offer type-ahead shortcuts for them: e.g., the 

keystrokes „cn<Ret>‟ become a shortcut for a user who 

frequently visits CNN‟s website.  

Spatial predictability. Studies have demonstrated that 

spatial stability allows users to make rapid decisions about 

items‟ locations rather than relying on comparatively slow 

visual search (e.g. [19]). Despite the desirability of spatial 

stability it is often compromised due to display space 

constraints – interface controls are often elided and 

repositioned as window geometry is manipulated, and this 

is necessary because widgets typically do not scale. There 

are interesting design opportunities in spatially stable 

interfaces that dynamically scale widgets.  

Low display demands. A final property of high performance 

interfaces is that they help the user focus on their primary 

activity, which typically involves their data. WIMPs rely on 

visual presentation, which consumes screen real-estate that 

might otherwise be used for data. This is critical on small 

devices, such as Netbook computers. For example, the 

window border, Ribbon, ruler and foot controls in Office 

2007 applications consume approximately 195 vertical 

pixels, and the default Windows 7 Taskbar consumes 

another 30, for a sum of 225 pixels, which is 38% of a 600 

pixel Netbook.  

Review of intermodal expertise development 

Compared to the extensive literature on intramodal 

expertise development, there has been much less on the 

factors influencing whether, how, and when users switch 

from novice to expert mechanisms. Note, our analysis does 

not review end-user programming (e.g., [11]) or interface 

customisation (see [4] for a good summary), which raise 

their own challenges (reviewed in [24] and [28]); although 

some of the factors identified below are applicable.  

In the following analysis, we address three critical points on 

the intermodal performance curve shown in Figure 1: first, 

factors influencing the initial switch to a new interface 

modality; second, the performance dip that a user is likely 

to experience when switching from a familiar interface to 

an unfamiliar one; and third, factors influencing the 

maintenance of the new modality.  

Making an initial switch 

Perception of the new modality. As Figure 2 shows, the 

probability of switching to a new modality is likely to be 

influenced by how the user perceives any future interaction 

with the new modality, so all of the intramodal factors 

described above play a role. Importantly, though, several 

studies have demonstrated that perceived experience differs 

from actual (e.g. [12]), and that users can mistrust their 

abilities, leading to false assumptions of poor performance 

(e.g., [9] showed users predicted poor performance in a 

spatial task, but performed well).  

Satisficing and optimising for immediate needs. The notion 

that users have a tendency to maintain existing strategies 

and use what is known and ready to hand in preference to 

new and improved ways of working is encapsulated by 

several theories, including Simon‟s „satisficing‟ [40] and 

„Maslow‟s hammer‟ [29] („to a man with a hammer, 

everything looks like a nail‟). In HCI, Carroll and Rossen 

[7] named the effect „the paradox of the active user‟, in 

which users “are likely to stick with the procedures they 

already know, regardless of their efficacy”.  

Exposure and experience. Incidental learning, as described 

with the intramodal factors, can also be used to promote 

learning across modalities by exposing users to alternative 

ways of achieving their tasks as a side effect of their 

interactions. More forcefully, interfaces can demand that 

users experience the new modality by requiring that actions 

are completed through it.  

Grossman [17] experimented with a variety of schemes for 

assisting hotkey learning. These included visual and audio 

schemes to expose users to the hotkeys, a delay-based 

technique to deter use of the GUI (i.e., making the system 

unresponsive for 2 seconds after each selection), and a 

technique that forced hotkey use following each menu 

selection. Their results showed that forced use and audio 

feedback worked well, with 72.8% and 66.6% of 

experimental selections being made with hotkeys. 

Subjective data showed no significant adverse response to 

the audio and forced use.  

One concern for hotkey strategies, though, is that 

Grossman‟s results suggest that users may only be able to 

learn a small hotkey vocabulary. In their experiment 73% of 

selections could be completed using six hotkeys, and 83% 

with eight, yet the participants‟ mean use was less than 

73%. Current desktop applications support hundreds of 

commands, and it is unclear how well audio feedback or 

enforced use can work in practice.   

Performance dip after switching 

Semantic and syntactic differences. The size of the 

performance dip that occurs after switching to a new 

interface modality will be influenced by the magnitude of 

the semantic and syntactic differences between the pre- and 

post-switch interfaces.  

Interface semantics determine the interface and data states 

that can be attained with the interface. Frequently, these 

states differ across modalities, with one modality 

supporting a subset of the other. For example, it is common 

for only a subset of controls to be accessible via hotkeys. 

Semantic differences are likely to discourage users from 

investigating secondary modalities as the effort invested in 

seeking new facilities may go unrewarded (when it supports 

a subset) or require formation of a new model (when it 

supports a superset).  



 
Figure 3. Blur’s default state: a tab at the screen top.  

 
Figure 4. Blur’s calm notification: command name 

associated with a GUI action. 

 
Figure 5. Blur’s hot command suggestions. 

 

Interface syntax is determined by the mechanics of control 

and the manner in which control elements are combined. 

Marking menus [25] are an excellent example of promoting 

expertise by minimising the syntactic differences between 

novice and expert interaction modes. Their commands are 

arranged radially around the cursor, like segments of a pie. 

Novices attend the visual feedback and learn the drag-

release movement directions for specific selections, such as 

„print is East‟. Experts, however, can use precisely the same 

interface syntax (a rapid directional drag and release) to 

select items without need for visual feedback.  

Maintenance of the new modality 

Whether users continue to use a new modality after making 

an initial switch depends on the magnitude of the 

performance dip they encounter and on their perception of 

their future performance with the modality, including how 

quickly they expect to outperform the original modality, 

and their estimation of their ultimate performance ceiling. 

These issues primarily depend on intramodal issues, 

described earlier, as shown in Figure 2.  

BLUR: USAGE, RATIONALE, AND IMPLEMENTATION 

The framework highlights three main challenges that Blur 

aims to address in assisting users to make a transition to 

expert interaction: promote an initial switch, minimise the 

dip in performance, and enable a high performance ceiling. 

Figure 2 shows how Blur‟s two main features of calm 

notification and hot commands (described below) are 

designed to map onto these components of the framework. 

Overview of the user experience of Blur 

Blur observes and controls interactions with unaltered 

desktop applications on Microsoft Windows platforms.  

Blur’s calm notification feedback during WIMP use. 

Figure 3 shows Blur‟s normal display state, with only a 

small translucent tab at the top of the screen displaying the 

text „Press <Esc>‟. When the user carries out an interface 

action by clicking on an interface control using the mouse, 

Blur provides calm notification of an alternative syntax for 

achieving the same action – the translucent tab expands 

displaying a command name. Figure 4 shows Blur‟s 

feedback („Align Left‟) after clicking the  button in 

Microsoft Word. After one second, the transparent window 

gradually contracts back to its tab state. Blur‟s window can 

be clicked through, allowing continued manipulation of the 

underlying GUI while Blur is visible.  

Controlling interfaces with Blur’s hot commands. Blur 

allows users to control the focal application, launch new 

applications, and manipulate windows using typed CLI hot 

commands. The user presses the Escape key to display 

Blur‟s translucent window, and command recommendations 

are shown in response to each successive typed letter. 

Figure 5 shows Blur‟s recommendations after typing 

‘<Esc>al’ when Microsoft Word is the focal application: 

the „align left‟ command is recommended first and can be 

selected by pressing the Return key, but the arrow keys can 

be used to move through the recommendations (e.g. „calc‟). 

Design rationale 

Calm notification  

Blur‟s calm notification provides transitory feedback 

revealing the command name that is equivalent to each 

mouse initiated action. Calm notification is primarily 

intended to reduce the tendency to satisfice and to promote 

an initial intermodal switch to Blur‟s hot commands. 

However as Figure 2 shows we also intend that it will 

provide a visually salient and continual reminder of the 

availability of the hot command alternative, as well as 

supporting incidental learning of the hot commands.  

Importantly, we also intend that calm notification will help 

users identify that there is a one-to-one correspondence 

between each WIMP action and each hot command. This 

means that the user‟s mental model of interaction is largely 

unaffected by the transition between interface modalities. In 

other words, Blur‟s hot command interface does not change 

the structural decomposition of tasks into interface actions, 

and calm notification is the mechanism to communicate this 

absence of change to the user. This consistency is intended 

to minimise the performance dip associated with switching 

to Blur‟s hot commands.  

Hot commands 

As Figure 2 shows, Blur‟s hot commands are primarily 

designed to support a high performance asymptote, but as 

mentioned above they are also designed to provide a one-to-

one mapping to WIMP commands to minimise the 

performance dip. This one-to-one relationship is unusual for 

CLIs, which normally require a different style of working 

typified by „action-object‟ syntax, where data is identified 

through parameters following the command.  

Blur‟s hot commands are symbolic (provided the original 

application designer has assigned meaningful names to 

controls), which should aid learning through appropriate 

mappings and metaphors. They support a flat command 

structure, allowing interface controls to be accessed with a 

single command, and eliminating the need to navigate 



 

through tab or menu hierarchies. They are terse and 

expressive, allowing unambiguous access to thousands of 

controls in a few keypresses. Hot commands also adapt to 

the user‟s interaction history by ordering command 

recommendations by frequency of use. Finally, Blur‟s 

interface consumes very little screen space. 

Implementation
4
 

Blur uses Microsoft‟s UI Automation API
5
 to discover the 

GUI control elements that users interact with. All 

applications implementing this interface can therefore be 

observed and controlled by Blur. When the user clicks an 

interface widget Blur intercepts the event to determine the 

control under the cursor, retrieving the command name and 

the shortcut key sequence that can be used to activate the 

control. The action can then be performed by typing the 

command into Blur, which automatically translates the 

command into corresponding keyboard shortcuts and sends 

them to the application, controlling the GUI.  

Blur orders command recommendations according to three 

candidate classes: exact matches, prefix matches and 

substring matches. Within each class, commands are sorted 

by frequency of use, and are displayed to the user. Typo 

correction is provided by remembering the most likely 

candidate at each keypress. If, at any point, the user‟s input 

matches an empty set of candidates, the most likely 

candidate from the previous keypress is suggested. 

Blur‟s command recommendations are also context 

sensitive to the focal application. Consequently, the 

characters “se” may match “Send” while using an email 

system and “select all” when using a word processor. 

Context sensitivity has several advantages including fewer 

matching commands for any typed string, and reduced 

probability of illegal commands (e.g., “Send” is illegal 

unless an email composition window is open). Blur also 

supports „global‟ interface controls such as window 

management and application launching. For example, 

window focus can be manipulated by typing any substring 

of the window title, (e.g., “in” for “email inbox”). Global 

commands are not context sensitive. 

Summary of Blur 

Blur is primarily designed to encourage an early and 

sustained switch to a command line interface. Blur‟s main 

mechanisms for supporting this are calm notification and 

hot commands, and importantly the hot command interface 

provides a one-to-one mapping to the WIMP interface. 

Although many previous research and commercial systems 

have supported CLIs (e.g., [21]), none have explicitly 

investigated the mechanisms used to initiate the modality 

switch. Grossman et al. [17] did investigate transitionary 

mechanisms, but the end modality was hotkeys, and their 

results suggest that hotkey vocabularies may be limited. 

                                                           

4
 Blur is available at: www.cosc.canterbury.ac.nz/blur 

5
 http://msdn.microsoft.com/en-us/library/ms747327.aspx 

EXPERIMENT: BLUR’S IMPACT ON USERS 

We conducted an experiment to answer four key questions 

about Blur‟s performance, focusing on the point of modality 

transition rather than long term maintenance.  

Q1. Do users switch to Blur‟s expert modality? 

Q2. How does performance with Blur compare to 

performance without it and with other methods? 

Q3. How large is the performance dip with Blur? 

Q4. What is the subjective response to Blur?  

The experiment involved a repetitive series of tasks using 

an unaltered version of Microsoft PowerPoint 2007, with 

and without Blur running. Participants also completed the 

tasks using the Office 2007 <Alt> shortcuts, which allows 

comparison between Blur and existing shortcut facilities. 

Repetitive tasks were used to compress long term 

interaction experiences into the short duration of a lab 

study, similar to Grossman‟s [17] study of hotkey learning. 

Participants and Apparatus 

The 20 participants aged 21 to 36 (mean 25, s.d. 4.4) were 

recruited from a local university. They reported using 

computers for a mean of 46.7 (s.d. 18.1) hours per week. 

The experiment ran on a Windows 7 computer with a 

1680×1050, 21" display. The target state for each task was 

shown on a sheet of paper placed alongside the computer.  

Tasks 

Five different PowerPoint slides were created, each 

containing five drawn objects of varying sizes and shading 

as shown in Table 1. The target state was shown on a sheet 

of paper at the side of the keyboard. All target states could 

be attained in a minimum of four commands, such as 

„Select All‟, „Align Left‟, „Group‟, „Flip Vertical‟. 

Participants were instructed to complete tasks as quickly 

and accurately as possible. Automatic logs recorded all user 

interactions, including task time data.  

Procedure 

At the start of the experiment participants were given a two 

minute introduction to Blur using a PowerPoint slide 

containing a single text field. They were instructed to make 

the text Bold, Italic, Bulleted and Numbered using the GUI 

and to observe Blur‟s feedback, and then repeat the same 

actions by typing Blur commands.  

The experiment proceeded through five stages, with each 

stage using one of Tasks 1-5 shown in Table 1, as follows:  

1.  familiarisation and training with PowerPoint  

2. optional use of Blur (blur) 
 counterbalanced 

3.  normal PowerPoint (wimp) 

4.  instruction to maximise use of Blur (blur-max) 

5. instruction to use <Alt> shortcuts (alt) 

Participants repeated the manipulations to move from the 

initial to target states five times with Task 1 and twelve 

times each in Tasks 2-5. Participants completed NASA-

TLX worksheets [20] and gave comments after Tasks 2-5.  



Task 1 was used to familiarise participants with 

PowerPoint‟s alignment, rotation, grouping and flipping 

controls, with instruction as necessary. Participants then 

repeatedly moved from initial to target states five times.  

Tasks 2 and 3 were completed with the WIMP and with 

Blur (counterbalanced). Before using Blur, participants 

were instructed to “complete the tasks as you please.”  

 Task 1 Task 2 Task 3 Task 4 Task 5 

Initial 

  
  

 

Target 

 
 

 
  

Table 1: Initial and target states for the five tasks. 

Task 4 was completed following explicit instruction to “use 

Blur’s facilities as much as possible”. This condition was 

included because we wanted to be certain to obtain 

measurements of Blur‟s performance. We could not rely on 

Tasks 2/3 to produce this data because participants had the 

option to ignore Blur entirely.  

Task 5 was used to analyse user performance with 

Microsoft Office‟s built in <Alt> shortcut navigation 

controls. This task was included because it was possible 

that the existing shortcut facilities would outperform Blur. 

Prior to completing these tasks participants received two 

minutes instruction on <Alt> shortcuts and practiced with 

the same text tasks used for familiarisation with Blur.  

Results 

Q1. Do users switch to Blur’s expert modality? 

In Task 2/3, where participants were instructed to complete 

tasks however they liked, all chose to use Blur. The mean 

trial number at which participants switched to Blur was 

1.65 (s.d. 1.0), with 55% of participants using Blur in the 

first trial, increasing to 90% in the second, 95% in the third, 

and 100% by the fifth. Two of the participants briefly 

returned to using the WIMP after their first use of Blur, but 

switched back and continued using Blur through the final 

trials (we suspect that these participants were confirming 

that Blur was faster than the WIMP). In contrast to the 

successful switch to Blur, none of the participants tried to 

use <Alt> shortcuts. Several used prior knowledge of Ctrl-a 

for „select all‟, and nearly half used Ctrl-g for „group‟, but 

many expressed surprise similar to the statement “there’s 

no shortcut for group” after visually inspecting the menu 

(there is, but it‟s not shown in the UI).  

Q2. How does performance with Blur compare to 
performance without it and with other methods? 

Trial times in Tasks 2-5 were analysed in a 4×3 repeated 

measures ANOVA for within-subjects factors interface 

(wimp, blur, blur-max, and alt) and block (repetitions 1-3, 

4-7, and 8-11, with trial 0 discarded as preparation).  

Results show a significant effect of interface (F3,57=97.9, 

p<.001), with means of 9.72, 9.92, 7.54, and 19.97 seconds 

for wimp, blur, blur-max and alt respectively (see Figure 6). 

There is also a significant effect of block (F2,38=77.9, 

p<.001), with participants‟ mean performance improving 

from 15.2 seconds in the first three trials to 10.7 seconds in 

trials 4-7 and 9.5 seconds in trials 8-11. Finally, as Figure 6 

suggests, there is a significant interface × block interaction 

(F6,114=15.3, p<.001), which is best explained by the 

relatively small cross block performance improvement with 

blur-max (due to prior experience to Blur) contrasting with 

the large improvement with alt. 

 
Figure 6. Mean task times with the four interfaces across the 

three blocks (1, 2, 3). Error bars ±1 s.e.m. 

A planned comparison between wimp and blur-max in the 

final block (repetitions 8-11, where participants are 

reaching their maximum level of performance) shows a 

significant difference (F1,19=7.6, p<.05) with blur-max 17% 

faster (6.77 seconds, s.d. 2.4) than the normal GUI controls 

(wimp, 8.14 seconds, s.d. 1.45). A final data point 

indicating that Blur enabled higher levels of performance is 

that 90% of the participants had their fastest task 

completion time when using Blur.  

Performance with Alt-shortcuts was particularly slow, and 

participants commented that they were „painful’ and 

„awful’. Participants also commented about the difficulty of 

learning the shortcuts due to their lack of symbolism (e.g. 

„<alt> h, g, a, l‟ for „align left‟). 35% of the participants 

stated that they were aware of Alt-shortcuts before the 

experiment, but none attempted to use them except during 

their enforced use in Task 5. 

Q3. How large is the performance dip with Blur? 

Our framework postulates that changing modality causes a 

performance dip, so we analysed performance data at the 

point that users switched to using Blur. Mean trial 

completion times are shown in Figure 7, with the solid line 

showing times immediately preceding and following the 

switch in the blur condition, and the dashed line showing 

data for the first four trials in the wimp condition for 

comparison. The figure shows that Blur caused a small 

performance dip in the first post-switch trial (from 20.5 sec 

to 20.9 sec), but that this loss was quickly recovered with 
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performance matching that of the wimp condition by the 

third post-switch trial and eventually outperforming it.  

Importantly, Blur‟s performance dip was relatively small, 

and consequently the participants were not discouraged 

from continuing to use it. The performance dip with alt, in 

contrast, was large (Figure 6), and participants would have 

immediately discontinued use if not required to do so.  

 
Figure 7. Evidence of Blur’s small ‘performance dip’, shown 

by the slight increase in task time in trials preceding and 

following the switch to using Blur (including trial 0).  

Q4. What is the subjective response to Blur?  

Participants responded positively to Blur, and provided 

many suggestions for improvements. At the end of the 

experiment they ranked the three interfaces (blur, wimp and 

alt) in order of preference, with 1 most preferred, and 3 

least. Twelve ranked blur first, 6 wimp first, and 1 Alt-

shortcuts, giving a significant rankings difference 

(Friedman 2

r =18.9, p<.001), with means of 1.37 (s.d. 0.5), 

1.84 (0.69) and 2.79 (0.54) for blur, wimp and alt.  

We measured how intrusive participants found Blur‟s calm 

notification. One participant stated that it was “annoying”, 

and another that it was “distracting, but easily ignored”. 

The mean response to the question “Blur‟s feedback was 

distracting” (1 disagree, 5 agree) was 2.45 (1.4).  

 Wimp Blur   Alt 2

r
 Sig 

Mental Demand 2.45 (1.1) 2.85  (0.9) 4.45 (0.8) 23.5 <.001 
Physical Demand 3.15 (1.3) 2.5  (1.1) 3.1 (1.1) 3.8 =0.15 
Hurried 2.85  (1.0) 2.8  (1.1) 3.5 (1.1) 3.7 =0.16 
Successful 3.95  (0.7) 4.1  (0.4) 2.9 (0.9) 14.8 <.001 
Hard work 2.85  (1.3) 3.2  (0.8) 4.3  (0.7) 16.1 <.001 
Insecure 2.3  (1.4) 2.2  (0.7) 4.2  (1.0) 19.2 <.001 

Efficient 2.9  (1.3) 4.3  (0.7) 2.1  (1.2) 20.1 <.001 
Easy to learn 4.1  (1.1) 4.1  (0.8) 2.6  (1.2) 13.7  <.005 
Error prone 2.5  (1.1) 2.8  (1.0) 4.35 (0.9) 19.1 <.001 

Table 2. Mean responses (sd) to 5 point Likert-scale questions. 

NASA-TLX worksheet responses, summarised in Table 2, 

show significant interface differences for mental demand, 

perceived success, amount of work, and insecurity, but the 

main cause is the poor performance of Alt-shortcuts, rather 

than differences between wimp and blur conditions. Table 2 

also shows higher efficiency ratings for Blur‟s (mean 4.3) 

than wimp (2.9) or alt (2.1). Mean ratings for Blur‟s ease of 

learning were the same as the normal interface (4.1), despite 

their brief exposure to it; their rating of Alt-shortcuts 

learnability was much worse (2.6).   

The final stage of the experiment involved asking 

participants to switch between windows and launch 

applications, performing minor operations in each: 

conducting an image search in Firefox, copying one of the 

resultant images to Paint, cropping the image, pasting it into 

a Microsoft Word document, checking their email inbox, 

then repeating the process with a different image search. 

They were instructed to complete the tasks in any way they 

liked, and that Blur was available.  

The participants made extensive use of Blur throughout the 

task. We noted a tendency for users to persist with the 

mouse after using it to complete a task (e.g. cropping an 

image), and one user commented that “it’s easy to forget 

that Blur’s available, but the fading window reminds you” 

(referring to calm notification). Participants commented that 

“I especially like it opening and running programs instead 

of the start menu” and that “I liked fast switching”.  

Finally, two participants stated a desire for recency ordering 

in command recommendations: “The ranking system should 

give higher precedence to the last used command” and 

“Items should be promoted faster”. 

DISCUSSION 

Blur‟s calm notification and hot commands interface was 

designed to promote an initial modality switch, to minimise 

the performance dip associated with doing so, and to offer a 

high performance ceiling (perceived and actual). The 

experiment validated the design, showing an early switch to 

hot commands, that the performance dip was small, that 

users continued to use Blur, that it enabled higher levels of 

performance than the normal UI and Alt-shortcuts, and that 

users preferred it. 

Why did Blur succeed?  

Blur is a realistic system that works with unaltered desktop 

applications. We designed calm notification and hot 

commands as generalisable and scalable transitionary 

mechanisms that could work in real work settings. 

Furthermore, our framework suggests that modality 

switches depend on many factors, including perception of 

the efficiency of expert modalities. Consequently, it is 

difficult to isolate the independent contribution of Blur‟s 

design elements in supporting the modality switch – while 

the gestalt design succeeds, we do not know whether this is 

due to the perceived efficiency of hot commands, the ready-

to-hand reminder provided by calm notification, the one-to-

one semantic relationship of hot commands, and so on. The 

participants‟ comments similarly highlight different aspects 

of Blur‟s perceived and actual utility. We believe that calm 

notification and hot commands are useful and generalisable 

approaches for interfaces wishing to support a transition to 

expertise, but further work is needed to tease out their 

independent and interacting value. 

Does Blur work in the real world? 

The experiment used repetitive tasks to compress long term 

command use into the short duration of a lab study. This is 

a common strategy for examining interface learning (e.g. [5, 
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17]), but it raises concerns that the findings may not 

generalise to real use, discussed below. 

Limited vocabulary. The study used a small command 

vocabulary, so there are risks that Blur may not generalise 

to larger command sets (in the same way that Grossman‟s 

results suggest that  hotkey vocabularies may be limited 

[17]). Two issues encourage us to believe that Blur‟s 

approach is robust to large vocabularies. First, the final 

stage of the experiment involved relatively unconstrained 

interaction within and across applications. The participants 

continued to use Blur throughout these activities, and were 

enthusiastic about its support for window switching and 

application launching, which were not heavily repeated. 

Second, we believe that the strategies of one-to-one 

Blur/GUI command relationship and of populating 

command names from the GUI create a strong and symbolic 

mapping that helps users anticipate commands. For 

example, Blur‟s command for  is „subscript‟ (or „sub‟), 

and the Zoom control is „zoom‟ (or „zo‟), but the built-in 

hotkeys are much less symbolic and (we believe) harder to 

remember: „Ctrl+=‟ (or „Alt+h5‟) and „Alt+wq‟.  

Novelty bias. Participants in the experiment will have 

inferred that we were interested in their performance with 

Blur, which may have drawn them to use it. We counter this 

concern in two ways. First, Alt-shortcuts were also novel to 

most of our participants, but their response was strongly 

negative. Second, any user who installs a system like Blur 

is also likely to be curious about its behavior. 

Not real work. Real work has different engagement and 

time pressure than experimental tasks. This is true of nearly 

all controlled experiments, but is particularly important in 

our experiment where we are concerned about reducing the 

tendency to satisfice. We believe that our participants were 

genuinely trying to optimize their performance, but 

understand that this may have artificially eliminated some 

of the tendency to satisfice. We will examine Blur‟s logs of 

real use in the coming year.  

Our own experiences. Our concerns about real-world use 

are eased by our own experiences in using Blur over the last 

few months. Two of the authors are enthusiastic users (the 

other two use Macs and cannot run it), particularly for two 

activities and settings. First, application launching and 

window switching is extremely rapid (e.g., „Esc+in‟ to 

check the email inbox and „Esc+fi‟ to launch Firefox). 

Second, Blur‟s control of applications is invaluable when 

using a laptop computer without a mouse (e.g., on planes, in 

waiting rooms, etc.) We have found that the threshold for 

using Blur is influenced by the pointing device. When using 

a mouse, the threshold often favours Blur, but not when 

tasks predominantly involve direct manipulation (e.g., 

drawing). However, when using a less precise device, like a 

trackpad, Blur‟s benefits are substantial.  

How can Blur be improved and generalised?  

Improvements to Blur’s CLI trigger. Four participants 

stated that using the Escape key was awkward, and that they 

would prefer to assign their own key, such as Alt. One also 

stated that Blur‟s hot command window should remain 

open until explicitly dismissed, allowing multiple 

commands with a single Escape keypress.  

Alternative implementations of calm notification and hot 

commands. Many tasks are predominantly mouse driven 

(e.g. CAD drawing), so hot commands would require a 

homing action away from the mouse. Blur could be adapted 

to support other expert modalities such as a ListMap [19], 

which provides a spatially stable miniaturized 

representation of UI controls (flattening the interface 

hierarchy). Calm notification could alert users to the 

location of selected controls within the ListMap. We are 

currently implementing this approach.   

Removing limitations of the platform. Blur‟s support is 

limited by the capabilities of the UI Automation API and by 

how applications implement it. Many applications do not 

fully or properly implement the API, which requires Blur to 

implement work-arounds, such as parsing the control tree 

when an application is launched and dynamically detecting 

shortcuts for applications that do not properly connect the 

control tree. These issues increase implementation 

complexity and constrain functionality, but software 

vendors like Microsoft and Apple could ease the limitations 

by refining their scripting and automation technologies, and 

by promoting their use in applications. 

Despite these limitations, Blur is a useful tool in its current 

implementation, and we have been using it successfully in 

unaltered Windows environments for several months.  

CONCLUSIONS 

Many office workers use their desktop applications for 

hundreds of hours each year, yet there is tendency to resist 

making the transition to expert strategies that could 

dramatically improve their performance.  

This paper provided a framework for understanding the 

human and interface factors influencing the transition to 

expert interface modalities. We also described the design 

and evaluation of Blur, which uses calm notification of hot 

commands to prompt an initial switch to its expert modality, 

to minimise the performance dip associated with doing so, 

and to enable a high performance ceiling. Experimental 

participants made an early and sustained switch to Blur‟s 

hot commands, they benefited from doing so, and they 

preferred it to the normal interface.  

There are several directions for further work. We will 

experiment with ListMap strategies for mouse-driven expert 

interaction, and with associated spatial means for calm 

notification. We will also refine and extend Blur‟s 

capabilities to assure that it is robust and functionally rich 

both within and across a wide range of applications. We 

will continue to empirically assess how its design features 

contribute to the initial modality switch, and finally, we will 

deploy Blur and assess its real-world use through field 

studies and log analyses.  
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