
Supporting Tailorable Program Visualisation

Through Literate Programming

and Fisheye Views

Andy Cockburn 1

Department of Computer Science, University of Canterbury,
Christchurch, New Zealand

Abstract

This paper describes the “Jaba” programming environment which allows users to
tailor the level of abstraction at which they visualise, browse, edit and document
object-oriented programs. Its design draws on concepts from literate programming,
holophrasting displays, fisheye visualisation and hypertext to allow programmers
to rapidly move between abstract and detailed views of Java classes. The integra-
tion of these four techniques provides a synergy at the interface that, we argue, is
unavailable in current commercial systems.

Key words: literate programming, fisheye visualisation, hypertext, programming
environments, java.

1 Introduction

Computer programming is a demanding activity. Programmers work within
complex information spaces at many different levels of abstraction. For exam-
ple, modifying the internal structure of a method requires a detailed view of
its contents, but invoking a method needs only an abstract view of its method
signature to determine the number, type and order of parameters. Figure 1
illustrates the problem in an object-oriented program. It shows a program
line inside class X, and the possible points of reference that the programmer
may wish to view in association with the line. The figure also shows the lim-
ited display extent of a ‘typical’ editor window into class X. To ease these
problems modern programming environments include powerful searching and

1 E-mail: andy@cosc.canterbury.ac.nz

Preprint submitted to Elsevier Preprint 6 April 2000

classVar = classMethod(classConst) *
 obVar.obMethod(localVar);

import java.awt.*;
import java.awt.event.*;

public class GuiYahtzee {

 //*<<Declarations>>{
 private final String butLabels[] = {"Ones", "Twos", "Threes",
 "Fours", "Fives", "Sixes", "Three of a Kind", "Four of a Kind",
 "Full House", "Low Straight", "High Straight", "Yahtzee", "Chance"};

 private Panel scores = new Panel();
 private Panel diceSet = new Panel();
 private Panel roller = new Panel();
 private Button cats[] = new Button[CellCodes.CHANCE+1];
 private Checkbox chbs[] = new Checkbox[DiceBoard.NUMDIE];
 private GuiDice dice[] = new GuiDice[DiceBoard.NUMDIE];
 protected TextField tfs[][] =
 new TextField[CellCodes.GRANDTOTAL+1][Match.MAXGAMES];
 protected Button rollButton = new Button("Roll the Dice!");
 protected Button nextPlayerButton = new Button("Next Player");
 protected DiceBoard db = new DiceBoard();
 protected Label nextPlayerLabel = new Label();
 private GridBagLayout gbLayout;
 private GridBagConstraints gbConstraints;
 //*<<Declarations>>}

 //*<<WidgetActivationMethods>>{
 //doc<<WidgetActivationDoc>>{
 /*
 The methods contained in this chunk activate and deactivate
 GUI components to ensure that there is continual syntactic
 correctness in the interface.

 show_scoreSheet displays the current status of the player’s game.

 enable_buttons enables only those category selection buttons that
 have not yet been used by the player in this game.

 disable_AllCells disables all categories selection buttons. It is
 called when the user has made their selection.

 reset_board resets the dice−board for the next roll series.
 Dice locking check−boxes are disabled and set to unchecked.
 */
 //doc<<WidgetActivationDoc>>}

 protected void show_scoreSheet (Player p, int gameNum) {
 int score = 0;
 for (int g = 0; g <= gameNum; g++) {
 for (int but = CellCodes.ONES; but <= CellCodes.GRANDTOTAL; but++) {
 score = p.getScoreCell(g, but);
 if (score < 0)
 tfs[but][g].setText("");
 else
 tfs[but][g].setText(String.valueOf(score));
 }
 }
 }

 protected void enable_buttons (Player p, int gameNum) {
 for (int but = CellCodes.ONES; but <= CellCodes.CHANCE; but++) {
 if (p.getScoreCell(gameNum, but) < 0)
 cats[but].setEnabled(true);
 }
 }

 protected void disable_AllCells () {
 for (int but = CellCodes.ONES; but <= CellCodes.CHANCE; but++) {
 cats[but].setEnabled(false);
 }
 }

 protected void reset_board() {
 db.resetBoard();
 configure_die(db);
 for (int die = 0; die < DiceBoard.NUMDIE; die++) {
 chbs[die].setState(false);
 chbs[die].setEnabled(false);
 }
 }
 //*<<WidgetActivationMethods>>}

 //*<<ScoringMethods>>{
 protected void clickScoreCell(int code, Match m) {
 Player p = m.getCurrentPlayer();
 int gameNum = m.getGameNum();
 Evaluator eval = new Evaluator ();
 eval.evaluate(db, code, p, gameNum);
 show_scoreSheet(p, gameNum);
 disable_AllCells();
 rollButton.setEnabled(false);
 nextPlayerButton.setEnabled(true);
 }

 // Listener for category selection.
 // Must create an evaluator for the board state.
 private void attach_listener (final Button b, final int code, final Match m) {
 b.addActionListener(new ActionListener () {
 public void actionPerformed(ActionEvent e) {
 // The row’s field (for the right game) is configured with the
 // score.
 clickScoreCell(code, m);
 }
 });
 }
 //*<<ScoringMethods>>}

 //*<<GuiConstructionMethods>>{
 private TextField[] make_five_fields (int row) {
 gbConstraints = new GridBagConstraints();
 gbConstraints.gridy = row;
 gbConstraints.fill = GridBagConstraints.NONE;
 final TextField tfsrow[] = new TextField[Match.MAXGAMES];
 for (int field = 0; field < Match.MAXGAMES; field++) {
 tfsrow[field] = new TextField(3);
 // tfsrow[field].setEnabled(false);
 tfsrow[field].setEditable(false);
 gbConstraints.gridx = field+1;
 gbLayout.setConstraints(tfsrow[field], gbConstraints);
 scores.add(tfsrow[field]);
 }
 return tfsrow;
 }

 private void oneRow (final String label, final int butCode, final Match m) {
 gbConstraints = new GridBagConstraints();
 cats[butCode] = new Button(label);
 cats[butCode].setEnabled(false);
 cats[butCode].setForeground(Color.black);
 cats[butCode].setBackground(Color.lightGray);
 gbConstraints.gridx = 0;
 gbConstraints.fill = GridBagConstraints.HORIZONTAL;
 gbConstraints.gridy = butCode;
 gbLayout.setConstraints(cats[butCode], gbConstraints);
 scores.add(cats[butCode]);

 tfs[butCode] = make_five_fields (butCode);
 attach_listener(cats[butCode], butCode, m);
 }

 private void make_totals_rows(String s, int row) {
 gbConstraints = new GridBagConstraints();
 Label label = new Label(s);
 gbConstraints.gridx = 0;
 gbConstraints.fill = GridBagConstraints.HORIZONTAL;
 gbConstraints.gridy = row;
 gbLayout.setConstraints(label, gbConstraints);
 scores.add(label);
 tfs[row] = make_five_fields(row);
 }

 private void make_dice_and_checkboxes(final DiceBoard db, boolean cheat) {
 diceSet.setBackground(Color.white);
 diceSet.setLayout(new GridLayout(2, DiceBoard.NUMDIE));
 for (int die = 0; die < DiceBoard.NUMDIE; die++) {
 dice[die] = new GuiDice(db.getDie(die), cheat);
 // dice[die].setEnabled(false);
 // dice[die].setEditable(false);
 diceSet.add(dice[die]);
 }

 for (int die = 0; die < DiceBoard.NUMDIE; die++) {
 final int which = die;
 chbs[which] = new Checkbox();
 chbs[which].setEnabled(false);
 chbs[which].addItemListener(new ItemListener () {
 // This method is called when the user clicks the button
 public void itemStateChanged(ItemEvent e) {
 db.getDie(which).toggleLock();
 }
 });
 diceSet.add(chbs[which]);
 }
 }
 //*<<GuiConstructionMethods>>}

 //*<<GamePlayingMethods>>{
 public void configure_die (DiceBoard db) {
 for (int die = 0; die < DiceBoard.NUMDIE; die++) {
 dice[die].showval(db.getDie(die).getValue());
 }
 }

 protected void doARoll(DiceBoard db, Match m, final Button rollBut) {
 db.rollBoard();

 configure_die(db);
 for (int die = 0; die < DiceBoard.NUMDIE; die++) {
 chbs[die].setEnabled(true);
 }
 switch (db.getNextRollNum()) {
 case 1:
 // Roll number has cycled round to 1.
 rollBut.setEnabled(false);// Will be reset on score allocation
 break;
 case 2:
 rollBut.setLabel("Second Roll");
 break;
 case 3:
 rollBut.setLabel("Last Roll");
 break;
 }
 }

 private void final_scores (Match m) {

 //*<<Initialisation>>{
 int numPlayers = 0;
 int playerTotal = 0;
 int gameNum = 0, maxGameNum = 0;
 Player p;
 //*<<Initialisation>>}

 //*<<ConstructWindow>>{
 final Frame f = new Frame();
 Panel titles = new Panel();
 titles.setLayout(new BorderLayout());
 Label maintitle = new Label("Yahtzee World!");
 maintitle.setFont(new Font("SansSerif", Font.ITALIC, 24));
 Label instr = new Label("Final Scores (total of game scores).");
 instr.setFont(new Font("SansSerif", Font.PLAIN, 16));
 titles.add(maintitle, "North");
 titles.add(instr, "South");

 Panel names = new Panel();
 Label l[] = new Label[Match.MAXPLAYERS];
 final TextField t[] = new TextField[Match.MAXPLAYERS];
 //*<<ConstructWindow>>}
 //*<<FillWindowWithData>>{
 numPlayers = m.getNumPlayers();
 names.setLayout(new GridLayout(numPlayers, 2));
 for (int playerNum = 0; playerNum < numPlayers; playerNum++) {
 p = m.getPlayer(playerNum);
 playerTotal = 0;
 l[playerNum] = new Label(p.getName());
 t[playerNum] = new TextField(20);
 names.add(l[playerNum]);
 names.add(t[playerNum]);
 maxGameNum = (m.getGameNum() >= Match.MAXGAMES) ?
 (Match.MAXGAMES−1) : m.getGameNum();
 for (gameNum = 0; gameNum <= maxGameNum; gameNum++) {
 playerTotal +=
 p.getScoreCell(gameNum, CellCodes.GRANDTOTAL);
 }
 t[playerNum].setText(String.valueOf(playerTotal));
 }
 //*<<FillWindowWithData>>}
 Button quit = new Button("Quit");
 quit.addActionListener(new ActionListener () {
 // This method is called when the user clicks the button
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
 });
 }
 });
 f.add(titles, "North");
 f.add(names, "Center");
 f.add(quit, "South");
 f.pack();
 f.show();
 }
 //*<<GamePlayingMethods>>}

 // Constructor for the GUI
 public GuiYahtzee (final Match m, boolean cheat) {
 Button quit = new Button("Final Scores, then Quit");
 Label title = new Label("Yahtzee World!");
 title.setFont(new Font("SansSerif", Font.ITALIC, 24));
 final Frame f = new Frame();
 Panel cont = new Panel();
 cont.setLayout(new BorderLayout());

 // add the three panels
 gbLayout = new GridBagLayout();
 scores.setLayout(gbLayout);

 // Create the rows of category buttons and fields
 for (int row = CellCodes.ONES; row <= CellCodes.CHANCE; row++) {
 oneRow(butLabels[row], row, m);
 }

 // Make the totals displays
 make_totals_rows("Upper Section Bonus", CellCodes.USBONUS);
 make_totals_rows("Total Upper Section", CellCodes.TOTALUS);
 make_totals_rows("Total Lower Section", CellCodes.TOTALLS);
 make_totals_rows("Yahtzee Bonus", CellCodes.YAHBONUS);
 make_totals_rows("Grand Total", CellCodes.GRANDTOTAL);

 // Make the dice and checkboxes
 make_dice_and_checkboxes(db, cheat);

 // Add the roll button
 roller.setBackground(Color.white);
 roller.setLayout(new GridLayout(2, 1));
 roller.add(rollButton);
 roller.add(nextPlayerButton);
 rollButton.addActionListener(new ActionListener () {
 // This method is called when the user clicks the button
 public void actionPerformed(ActionEvent e) {
 enable_buttons(m.getCurrentPlayer(), m.getGameNum());
 doARoll(db, m, rollButton);
 }
 });
 if (m.getNumPlayers() == 1)
 nextPlayerButton.setLabel("Next Go");
 nextPlayerButton.setEnabled(false);
 nextPlayerButton.addActionListener(new ActionListener () {
 // This method is called when the user clicks the button
 public void actionPerformed(ActionEvent e) {
 m.nextPlayer();
 nextPlayerButton.setEnabled(false);
 if (m.getGameNum() == Match.MAXGAMES) {
 nextPlayerLabel.setText("All games played!");
 nextPlayerLabel.setBackground(Color.black);
 nextPlayerLabel.setBackground(Color.white);
 rollButton.setEnabled(false);
 } else {
 rollButton.setEnabled(true);
 nextPlayerLabel.setText("Player: " +
 m.getCurrentPlayer().getName() + " Game: " +
 (m.getGameNum()+1) + " Round: " + (m.getRoundNum()+1));
 show_scoreSheet(m.getCurrentPlayer(), m.getGameNum());
 rollButton.setLabel("Roll the Dice!");
 reset_board();
 }
 }
 });
 nextPlayerLabel.setText("Player: " +
 m.getCurrentPlayer().getName() + " Game: " +
 (m.getGameNum()+1) + " Round: " + (m.getRoundNum()+1));
 quit.addActionListener(new ActionListener () {
 // This method is called when the user clicks the button
 public void actionPerformed(ActionEvent e) {
 final_scores(m);
 f.dispose();
 }
 });
 cont.add(quit, "North");
 cont.add(title, "Center");
 cont.add(scores, "South");
 f.add(cont, "North");
 f.add(diceSet, "West");
 f.add(roller, "East");
 f.add(nextPlayerLabel, "South");
 f.pack();
 f.show();
 }

 public static void main (String[] args) {

 final Match m = new Match();

 final Frame f = new Frame();
 Panel titles = new Panel();
 Panel cheatok = new Panel();

 titles.setLayout(new BorderLayout());
 Label maintitle = new Label("Yahtzee World!\nPlayer Details...");
 maintitle.setFont(new Font("SansSerif", Font.ITALIC, 24));
 Label instr = new Label("Type the name of each player (1 to " +
 Match.MAXPLAYERS + " players)");
 instr.setFont(new Font("SansSerif", Font.PLAIN, 16));
 titles.add(maintitle, "North");
 titles.add(instr, "South");

 Panel names = new Panel();
 Label l[] = new Label[Match.MAXPLAYERS];
 final TextField t[] = new TextField[Match.MAXPLAYERS];
 names.setLayout(new GridLayout(Match.MAXPLAYERS, 2));
 for (int player = 0; player < Match.MAXPLAYERS; player++) {
 l[player] = new Label("Player " + (player+1) + " name");
 t[player] = new TextField(20);
 names.add(l[player]);
 names.add(t[player]);
 }

 cheatok.setLayout(new BorderLayout());
 final Checkbox cheat = new Checkbox("Cheat", false);
 Button ok = new Button("OK");

 ok.addActionListener(new ActionListener () {
 // This method is called when the user clicks the button
 public void actionPerformed(ActionEvent e) {
 String name = "";
 for (int player = 0; player < Match.MAXPLAYERS; player++) {
 name = t[player].getText();
 if (name.length() != 0)
 m.addPlayer(name);
 }
 if (m.getNumPlayers() == 0) {
 m.addPlayer("DUMMY");
 System.out.println("No named players. Inventing one called ‘DUMMY’");
 }
 GuiYahtzee me = new GuiYahtzee(m, cheat.getState());
 f.dispose();
 }
 });
 cheatok.add(cheat, "West");
 cheatok.add(ok, "East");

 f.add(titles, "North");
 f.add(names, "Center");
 f.add(cheatok, "South");
 f.pack();
 f.show();
 }
}

//doc<<ClassUsageDoc>>{
/** The Match class is the main ‘‘controller’’ of the yahtzee match.
A Match sequence is as follows: each player gets to play their turn in
the first round,
then each player gets to play their turn in the second round, and so on
until all MAXROUNDS
(13) rounds have been played for the first game. Then each player gets
to play the first round for the second game, and so on...

The Match class controls the following:<P>

 which Player plays next, and which is the current Player;
 the round number (0 through MAXROUNDS−1);
 the game number (0 through MAXGAMES−1).

*/
//doc<<ClassUsageDoc>>}

public class Match {
 /** The maximum number of players allowed per match. This
 value must be 5 when the class is submitted. */
 public final static int MAXPLAYERS = 5;

 /** The maximum number of games per match. This value must be 5 when
 the class is submitted. */
 public final static int MAXGAMES = 5;

 /** The maximum number of rounds per game. This value must be 13 when
 the class is submitted. */
 public final static int MAXROUNDS = 13;

 private int numPlayers = 0;
 private int currentPlayer = 0;
 private int gameNum = 0;
 private int roundNum = 0;

 private Player allPlayers[] = new Player[MAXPLAYERS];

 /** Constructor for the match. Initialises the number of players, the
 game number, the round number, and the current player number all to
 zero.
 */
 public Match() {
 numPlayers = 0;
 }

 /** Instance method which adds a named player into the set of players
 and adds one to the total number of players.
 */
 public void addPlayer(String name) {
 allPlayers[numPlayers++] = new Player(name);
 }

 /** Instance method which returns the number of players.
 The number returned is in the range 0 to MAXPLAYERS.
 Returns zero only when no players have yet been added through
 addPlayer().
 */
 public int getNumPlayers () {
 return numPlayers;
 }

 /** Instance method which returns the Player who’s turn it is. */
 public Player getCurrentPlayer () {
 return allPlayers[currentPlayer];
 }

 /** Instance method which returns the specified Player.
 @param playerNum numerical identifier for the player. Must be
 in the range 0 to n−1, where n is the number of players in the game.
 */
 public Player getPlayer (int playerNum) {
 return allPlayers[playerNum];
 }

 /** Instance method which advances to the next Player. If this is the
 last Player then advance to the next round. If this is the last
 round, then advance to the next game.
 */
 public void nextPlayer() {
 if (++currentPlayer == numPlayers) {
 currentPlayer = 0;
 nextRound();
 }
 }

 /** Instance method which returns the specified Player.
 @param playerNum numerical identifier for the player. Must be
 in the range 0 to n−1, where n is the number of players in the game.
 */
 public Player getPlayer (int playerNum) {
 return allPlayers[playerNum];
 }

 /** Instance method which advances to the next Player. If this is the
 last Player then advance to the next round. If this is the last
 round, then advance to the next game.
 */
 public void nextPlayer() {
 if (++currentPlayer == numPlayers) {
 currentPlayer = 0;
 nextRound();
 }
 }

 /** Instance method which returns the number of the current game.
 The number returned is 0 or greater (zero for the first game).
 Note that the graphical user
 interface is responsible for quitting the game when the game number
 advances to MAXGAMES
 */
 public int getGameNum () {
 return gameNum;
 }

 /** Instance method which returns the number of the current round.
 The number returned is in the range 0 to MAXROUNDS−1. */
 public int getRoundNum() {
 return roundNum;
 }

 private void nextGame () {
 roundNum = 0;
 ++gameNum;
 }

 private void nextRound() {
 if (++roundNum == MAXROUNDS)
 nextGame();
 }
}

Class X

Class Y

Window display space

Fig. 1. Interconnections arising from one program line. Window display space over-
laid in class X.

marking capabilities, and many support context-sensitive editing features such
as pop-up menus that let the programmer select available methods from object
reference variables. Despite these enhancements, each editor window is essen-
tially a ‘flat’ representation of program text that displays the programmer’s
focal point of interest and whatever neighbouring text fits into the window ex-
tent; scrolling, searching and marking must be used to move between related
program segments that lie outside the display extent of the window.

This paper describes “Jaba”, a hypertext system that supports programmers
in visualising, browsing, editing and documenting object-oriented programs.
By integrating concepts from ‘literate programming’ [15,14], ‘holophrasting
displays’ [26], ‘fisheye views’ [8], and hypertext [6], Jaba allows programmers
to tailor the level of program detail displayed across an arbitrary number
of program regions. It automatically divides the program into ‘chunks’ that
encapsulate syntactic program units, and users can add further chunks to
capture the cognitive units that they perceive in their programs. Literate pro-
gramming techniques support a strong connection between program code and
its associated documentation. Holophrasting schemes allow the user to show
or hide program regions, and fisheye views are used to tailor the level of detail
shown at, and around, the user’s focal point in the program. The aim is to
enhance the user’s ability to focus on, and navigate through, the salient pro-
gram details without the distraction of display-space clutter from superfluous
information.

The structure of the paper is as follows. Section 2 provides background re-
views of literate programming, holophrasting interfaces and fisheye views. The
javadoc system which produces HTML documentation from Java classes is

2

included in the review to motivate enhancements in systems such as Jaba.
Readers who are familiar with these techniques may wish to move directly to
Section 3 which describes the Jaba system. Section 4 provides the rationale
behind the major design decisions, and Section 5 critically assesses Jaba’s ca-
pabilities and discusses further work. Interactive programming environments
that demonstrate related capabilities to those of Jaba are presented in Sec-
tion 6. Section 7 summarises and concludes the paper.

2 Background: Programming and Levels of Detail

2.1 Literate Programming

Literate programming [14,15] is an elegant technique that allows programmers
to design, document, and construct their programs in whatever order best aids
human understanding. Using a literate programming tool, users can arrange
programming elements and their accompanying documentation in whatever
order they choose, rather than having the order of exposition dictated by the
requirements of the language’s compiler or interpreter. The resultant literate
program consists of ‘chunks’ of code and documentation in which the chunks
represent cognitive units in the program. These cognitive chunks need not
correspond to the programming language’s syntactic constructs. For example,
a cognitive chunk for a looping construct may contain a set of variable as-
signments that establish pre- and post-conditions in addition to the syntactic
elements of the loop. Defined chunks can be used by zero or more other chunks.

Literate programs can be ‘tangled’ to produce code that is ready for processing
by a compiler or interpreter, or they can be ‘woven’ to produce documentation
that includes extensive cross-referencing and indexing of program elements.
Literate techniques allow programmers to describe their programs clearly and
precisely, with their documentation integrated into the program, in a manner
that is impossible with standard CASE tools. Figure 2 shows the mark-up of
a java class “QuickDemo” that implements the quick sort algorithm using the
literate programming tool noweb [22]. Chunk definitions are denoted by the
construct <<Chunk Name>>=, and chunk uses by <<Chunk Name>>. The ‘root’
chunk is identified by the chunk-name *. The root chunk in Figure 2 ‘uses’
four chunks (“Import Packages”, “Static variable declarations”, “The
QuickSort method” and “The main program”), which are each defined later
in the literate program. Chunks may be defined in any order. Documentation
chunks begin with the @ symbol.

The text-based mark-up of literate programs adds a layer of syntax on-top of
the programming language syntax. Mistakes in the specification of the chunk-

3

<<*>>=

<<Import packages>>

public class QuickDemo {

<<Static variable declarations>>

<<The QuickSort method>>

<<The main program>>

}

@ This program demonstrates the {\tt QuickSort} algorithm. It reads

a list of numbers from the standard input, sorts them, and writes

the sorted results to standard output.

<<The QuickSort method>>=

public void qsort (int[] data, int left, int right) {

int cutval, temp, lo, hi;

<<Sort and divide until divided down to nothing!>>

}

@ Recursively sort an array {\tt data} of integers. {\tt left} and {\tt

right} denote the leftmost and rightmost elements of the array.

cutval is the value around which the array is sorted in each pass

through the array

<<Sort and divide until divided down to nothing!>>=

if (right > left) {

<<Get set by guessing a cut value and initialising indexes>>

<<Sort array with respect to cut value>>

<<Recursively sort left and right sub-arrays>>

}

@ When we make a recursive call where the right and left indexes are

the same, then we’ve divided down to nothing and we’re done with this

recursive call.

<<Get set by guessing a cut value and initialising indexes>>=

cutval = data[right];

lo = left -1;

hi = right;

@ Arbitrarily pick the rightmost element of the array as the cut value

for this pass.

Fig. 2. Literate mark-up of a segment of the QuickDemo class using noweb [22].

ing structure cause syntax errors when the literate program is ‘tangled’ or
‘woven’. For this reason Knuth did not advocate the use of literate program-
ming for students or hobbyists. Graphical user interfaces, however, can over-
come these problems by providing ‘syntactic correctness’ [25]—when the user
requests modification to the chunking structure, the program can assure that
the correct syntactic modifications are made to the underlying program. Such
a graphical user interface to literate programming for novice programmers is
described in [5].

2.2 Holophrasting Program Displays

Holophrasting interfaces [3,26] aim to improve visualisation of textual infor-
mation spaces by providing contextual overviews that allow users to suppress
or ‘elide’ the display of regions of text.

Holophrasting systems extract structural information from the document source.
Document markup tags such as section and subsection headings can be used to
determine structure. A variety of schemes have been proposed for extracting
structure from computer programs. These include using the grammatical rules
of derivation for the language, and the use of program blocks such as the se-
quence of statements between opening and closing braces in C. Holophrasting
systems are reviewed in Section 6.

4

16 do hi−−; while ((data[hi] > cutval) && (hi != 0));
17 temp = data[lo]; data[lo] = data[hi]; data[hi] = temp;
18 } while (hi > lo);
19 data[hi] = data[lo]; data[lo] = data[right]; data[right] = temp;
20 qsort(data, 0, lo−1);
21 qsort(data, lo+1, right);
22 }
23 }
24
25 public static void main (String[] args) {
26 QuickDemo me = new QuickDemo();
27 boolean valid;
28 for (int i = 0; i < data.length; i++) {
29 System.out.println("Enter an integer: ");
30 valid = false;
31 while (!valid) {
32 try {
33 data[i] = Integer.parseInt(stdIn.readLine());
34 valid = true;
35 }

1 import java.io.*;
2 public class QuickDemo {
3 ...
7 public void qsort (int[] data, int left, int right) {
8 ...
23 }
24
25 public static void main (String[] args) {
26 QuickDemo me = new QuickDemo();
27 boolean valid;
28 for (int i = 0; i < data.length; i++) {
29 ...
44 }
45 me.qsort(data, 0, data.length−1);
46 for (int i = 0; i < data.length; i++) {
47 System.out.print(data[i] + " ");
48 }
49 System.out.println();
50 }
51 }

Unholophrasted Holophrasted

Fig. 3. Twenty lines of the QuickDemo class in normal and holophrasted views.

The document regions to be suppressed may be under direct user control, or
may be automatically configured as the user moves their cursor through the
document. A variety of interface mechanisms can be used to reveal that text
has been suppressed—the most common is to display an ellipsis (‘...’). Figure 3
shows 20 lines of the QuickDemo class in a normal view (unholophrasted) and
in a holophrasted view which uses ellipsis to represent suppressed text: line
numbers are shown on the left of the program text. Note that the holophrasted
display reveals the entire extent of the class (first line to the last line).

2.3 Fisheye Visualisations

Furnas [8] introduced fisheye views as a way of allowing users to simultane-
ously view the details of their focal point of interest in an information space
while also displaying the surrounding contextual information. Fisheye views
have become a popular research topic and many systems have extended the
research, particularly in graphical information spaces [17,18]. When applied to
text, fisheye views are a powerful holophrasting technique in which the display
contents are automatically adapted in an attempt to match the user’s interest
in regions in the document.

A simple ‘degree of interest’ (DOI) formula is used to calculate the user’s
‘interest’ in all of the data-points in the information space (Equation 1). The
two factors used in this calculation are the user’s a priori interest in the data,
and the distance that the data lies from the user’s current focal point.

DOIfisheye(x|. = y) = API(x)−Distance(x, y) (1)

DOIfisheye(x|. = y) returns the user’s interest in the information at point
x, given that their current focus of attention is directed at point y. API(x)
returns the user’s a priori interest in data point x—it is a measure of the

5

semantic importance of the information. In a map, for instance, it is reasonable
to expect that cities would have a higher a priori interest than towns. In
computer programs, API values decrease with the nesting depth of program
elements. Distance(x, y) is a measure of the distance between points x and y—
in hierarchical data structures such as computer programs, distance may be
measured in terms of path distance between nodes, rather than as an absolute
measure.

If the calculated DOI measure for data-point x falls below a threshold k,
then the information at that point is suppressed or ‘elided’ (not displayed).
In our experience, it is necessary to normalise the values returned by the DOI
formula: this issue is further discussed in Section 3.5.

Furnas describes several example systems, including a visualisation mechanism
for C programs. In this system, program details around the user’s focus of
interest are displayed in full, while only the ‘landmark’ program segments are
displayed further from the user’s location, producing program views similar
to the holophrasted view shown in Figure 3. Ellipses and non-contiguous line-
numbers are used to indicate that lines in the text have been suppressed.
Furnas provides preliminary empirical evidence that fisheye techniques can
assist in searching hierarchical information.

Recent work on fisheye visualisations has greatly extended the original work,
particularly in graphical displays of networks (for example, [24,16]). Fisheye
visualisation techniques now offer many capabilities that could be used to
enhance the C program visualisation system originally proposed by Furnas.
Multiple focal points [23] would allow programmers to selectively reveal the
details of several points within program files, such as an editing point and a
secondary reference point. Another possibility is to enrich the display mech-
anisms used to denote suppressed lines of text. Techniques such as scalable
fonts would reveal much more information about the suppressed information
while consuming minimal amounts of screen real-estate. Systems demonstrat-
ing text-based fisheyes are reviewed in Section 6.

One potential problem with fisheye view techniques arises from the DOI for-
mula’s calculation of the user’s degree of interest. The formula implements a
heuristic assessment of the user’s likely degree of interest, and it will some-
times incorrectly suppress desired information or display information that is
unnecessary for the user’s task. Thus the formula will make it difficult for
programmers to explicitly select portions of the text that should be displayed
regardless of the user’s movement within the program. The equivalent of ‘man-
ual overrides’, or holophrasting, in the interface could be used to ensure that
regions in the program stay displayed regardless of their calculated degree of
interest.

6

(a) Java 1 javadoc of the Quick-
Demo class.

(b) Java 2 framed javadoc
documentation of the class
java.lang.String.

Fig. 4. Javadoc documentation.

2.4 Javadoc documentation

One of the major claims of the object-oriented programming paradigm is that
it encourages and supports code reuse. In Java, code comprehension and reuse
is greatly enhanced by the availability of javadoc 2 [7] documentation. The
javadoc tool generates HTML documentation by parsing the contents of class
files, and extracting information about methods, data-fields and any specially
formatted comments. All of the Java API (application programmer’s interface)
can be reviewed with a web-browser through javadoc’s consistent and easily
comprehensible format. Figure 4(a) shows a the javadoc generated for the
QuickDemo class constructor and its qsort method.

Sun’s Java2 javadoc produces framed HTML (Figure 4(b)). The frames ease
navigating between high-level packages, but the code-level documentation re-
mains similar to version 1.1. The Continuous Zoom interface [11] used a graph-
ical fisheye technique to ease navigation between package level views of the
Java API and the javadoc documentation pages.

There are several opportunities for enhancing the support javadoc offers. First,
javadoc produces static documentation that is separate from the actual code.
Code modifications can therefore render the documentation redundant or in-
correct. A dynamic version of javadoc could automatically ensure consistency

2 http://java.sun.com/products/jdk/javadoc/

7

Fig. 5. Jaba’s main window, showing the ‘main’ class of the Yahtzee program.

between the documentation and the program code. Second, javadoc is a post-
hoc documentation strategy that requires that the class has been developed
into a syntactically correct (and presumably complete) class specification. An
extension to javadoc could offer dynamically generated documentation even
for partially complete classes. Third, javadoc offers only a single level of ab-
straction for investigating the class: it reveals method signatures, the names
and types of class data-fields, and any specially formatted comments that the
programmer has written at the top-level in the class (formatted comments in-
side methods are ignored). An extension to javadoc could allow programmers
to investigate the internal details of classes, for instance checking the details
of the algorithm contained within a method. The Jaba system, described in
the following section, attempts to exploit each of these opportunities.

3 Jaba: System Description

3.1 Jaba Overview

Figure 5 shows a typical Jaba window, which contains three sub-windows:
a graphical tree representation of the class structure (top-left), a hypertex-
tual text editor/viewer (top-right), and an HTML text-viewer for displaying
javadoc documentation (bottom). The graphical tree and javadoc windows
can be hidden through check-boxes under the ‘View’ menu.

When a class is loaded into a Jaba window it is displayed at the most abstract
level (as in Figure 5). Only top-level chunks are shown, and none of the inner-
details of those chunks are revealed. The GuiYahtzee.java class displayed in

8

Chunk Type Icon Comment

Generic abstraction User-defined generic chunks. Used, for example, to group a
set of related methods.

Documentation User-defined documentation chunks.

Methods Jaba automatically detects methods and stores their con-
tents as chunks that can be contracted and expanded.

Constructors Constructor methods are automatically detected.

Statement blocks Jaba automatically detects statement blocks contained in
loops and conditionals.

Table 1
Five chunk types supported by Jaba and their iconic representation.

Figure 5 contains over four-hundred program lines, but the entire extent of
the class (first line to last line) is shown in the text-editor window. Semantic
information about chunk-types is displayed in the graphical tree. Jaba sup-
ports five different types of chunks (Table 1), each of which has its own iconic
representation in the graphical tree.

Users reveal successive levels of inner detail within chunks by clicking on the
plus icons in the tree representation or by clicking the hypertext links in the
text viewer/editor. When a chunk is expanded, the text it contains is shaded
gray for two seconds to help the user perceive the extent of the newly dis-
played information contained in the chunk. The hypertext links associated
with contracted chunks are coloured red and expanded links are coloured blue
(all colours are configurable). Chunks are contracted by clicking on the link
or by clicking the corresponding minus icon in the tree viewer. Several inter-
face features are intended to assist programmers in navigating through the
program. For instance, clicking on the name of a chunk in the graphical tree
causes the text display to immediately scroll to the associated chunk. Other
interface mechanisms that assist navigation are described in Section 3.4.

The top-half of Figure 6 shows the system state after expanding two levels
of inner detail. First, the user clicked the ScoringMethods link which en-
capsulated two Java methods (clickScoreCell and attach listener). This
caused abstracted representations of these methods to be displayed, showing
only their signatures. The user subsequently clicked on the clickScoreCell

hypertext link, revealing the inner-details of that method’s code.

Jaba parses classes prior to displaying them. All five types of abstractions are
detected, the types of all object variables are stored, and method invocations
are detected, as are connections with super-classes such as overriding methods
and invocations of super constructors. The text of every method invocation
has a hypertext link attached to it (coloured green) allowing easy inspection

9

Fig. 6. Expanding abstractions, and inspecting object details.

of the associated method details. The declaration of every object variable
is similarly linked to the associated class. When these links are clicked, if
a class file of the object type is available on the user’s class path 3 , then
the class details are displayed in a new Jaba window. Otherwise, if javadoc
documentation of the class is available then it is displayed in the HTML viewer
at the bottom of the window and in Netscape if the appropriate options are set
(using the Options menu). For example, the bottom half of Figure 6 shows the
javadoc documentation for the Button class. This was displayed when the user
clicked the Button hypertext link associated with the declaration of the first
parameter in the attach listener method. When the user clicks on method
invocation links, Jaba or javadoc immediately scroll to display the appropriate
method description.

3.2 Tailoring the Representation of Context

Figures 5 and 6 show no contextual information about the contents of un-
expanded chunks—all chunks in Figure 5 are unexpanded, and in Figure 6
chunk attach listener in the text-edit window is unexpanded. This is sim-
ilar to the approach described by Furnas (Section 2.3) in which suppressed
information is completely hidden from the user.

Jaba allows users to tailor the representation of the abstracted information
by selecting one of three text-sizes for the suppressed text (Figure 7(a)). The

3 The Java class-path determines where to search for source-code associated with
java classes.

10

(a) Select-
ing the
‘tiny’ size.

(b) ‘Tiny’ text revealing the context of abstracted chunks.

Fig. 7. Selecting and displaying ‘tiny’ text for abstracted program details.

‘Invisible’ option completely suppresses the abstracted details (as shown in
Figures 5 and 6). The ‘Tiny’ option, shown in Figure 7(b), provides limited
contextual information about the suppressed information contained within a
chunk. Although the text is not legible, the tiny option provides indications of
the amount of suppressed information, its overall structure (apparent from in-
dentation and from the number of red or blue portions which represent further
abstractions), and limited information about the contents—blocks of green, for
instance, reveal many declarations. The extreme miniaturisation of the ‘tiny’
font assures that minimal screen real-estate is dedicated to contextual infor-
mation. The ‘Legible’ option renders suppressed text in a very small, but just
legible, font. This option is a trade-off between the detailed views provided
by expanding chunks and the broad views that are enabled by hiding and
miniaturising suppressed chunks.

3.3 Creating Chunks

Section 2.1 noted that traditional interfaces to the mark-up of literate pro-
grams introduce a second layer of syntax on top of the programming language.
This raises the possibility of syntax errors in the mark-up of the literate struc-
ture.

Part of Jaba’s chunking structure is automatically extracted from the program
code, without the need for any additional mark-up—methods, inheritance,
loops and conditionals, for instance, are all automatically extracted, as are
the hypertext links to other classes and their methods. When the user chooses
to explicitly create new abstractions, the new mark-up is embedded within

11

Java comments. Although the user can enter the mark-up for new chunking
structure by typing it directly, the normal way to do so is through menu
options.

To convert an already existing section of code or documentation into a chunk,
the user first selects the region to be chunked and then selects the ‘Chunk
the selection’ option from the ‘Edit’ menu. To create a new chunk before
its contents have been written, the user selects ‘Add chunk’ from the ‘Insert
menu’. In either case, a pop-up dialogue box prompts the user for a chunk
name and type. The type can be either ‘Abstraction’—for generic abstractions
such as a grouping of related methods—or ‘Documentation’. The appropriate
syntactically correct comments are then added to the text to mark-up the
new chunking structure. There are no limits to the nesting depth of the chunk
structure.

3.4 Shortcuts for Exploring Abstractions

Several system capabilities are intended to assist users in rapidly attaining the
‘right level’ of abstraction in their visualisation of classes. A variety of short-
cuts, accessed under the ‘Options’ menu (Figure 7(a)), allow users to expand
or contract specific chunk types within the class. Through this menu, users
can selectively contract or expand all chunks of each semantic type (generic
abstraction, documentation, methods, constructors, or statement blocks), or
they can choose to contract or expand all chunks regardless of type. Expand-
ing all chunks provides a standard ‘flat’ text-editor with hyperlinking to the
objects referred to in the class.

The system also remembers prior levels of abstraction within any chunk, al-
lowing users to quickly refer back to previously inspected program regions.
For example, if the user expands five levels of detail within chunk X, they can
contract all of that detail by clicking the top-level link to X. When the user
next expands X it will automatically display the five levels of detail that it
previously showed.

3.5 Automatic DOI Display Configuration

Jaba includes a “fisheye” option (bottom of the Options menu Figure 7(a))
which automatically selects which chunks are suppressed and which are dis-
played. Selecting the fisheye option adds two elements to Jaba’s interface
(Figures 8 and 9): a ‘fisheye threshold’ slider widget appears in the top-right
of the window, and a focal point identifier/selector is added to the text-editor.

12

Fig. 8. Fisheye selection of suppressed regions: threshold value -1.

Fig. 9. Fisheye selection of suppressed regions: threshold value -3.

The focal point identifier/selector is shown as a small arrow in the left-margin
of the text-editor. The program line pointed to by the focal point arrow is
highlighted. The focal point is relocated by vertically dragging the arrow,
and when the arrow is released the DOI formula (Section 2.3) is used to
calculate whether each chunk in the program is displayed or suppressed. The
threshold slider controls the k threshold value for determining the lowest DOI
value to be displayed. Modifying the threshold value also causes the DOI
formula to be called, with consequent changes to the suppression and display
of program chunks. In Figure 9 the user has decreased the threshold value from
-1 (Figure 8) to -3, causing the for loop inside method make five fields to
be expanded. The graphical overview window in Figure 9 shows that methods

13

IF

FOR END

END

x= y= z[i]=

ELSE

FOR END

z[x]=

m=

API

−1

−2

−3

(1,3)

(1,4) (1,4)
(0,4)

(2,5) (2,5) (2,5) (4,0)

 (3,2)(3,1)

(2,2) (2,3)

Focal point A
Focal point B

Fig. 10. API and Distance values for each program line (abbreviated) with focal
points A and B in the program segment shown in Table 2. Values in parentheses
show the distances from focal points A and B respectively.

oneRow, make tota... and make dice have also been expanded by decreasing
the threshold value.

In implementing Furnas’s DOI formula, we found it necessary to normalise the
DOI values to ensure that at least one chunk has a DOI value of -1. Consider
a programmer moving from focal point A to focal point B in the program
shown in Table 2. The API and distance values for focal points A and B are
shown in Figure 10—the paired values in parentheses identify the distance of
each abbreviated program line from focal points A and B respectively. The
un-normalised DOI values are shown in the table. Assuming that the user
initially focuses on Point A with a threshold value of -2, all program lines
will be suppressed except for the focal line “m = z[i];” and the conditional
statement that provides its context “IF (x < y) THEN”. When the user moves
to focal point B, all program lines, even the focal point, will be suppressed
because the highest DOI value (-3) is lower than the threshold. Normalising
the DOI values assures that focal information is displayed, consequently saving
the user from having to continually modify the threshold value.

Focus Code API A Dist. A DOI B Dist. B DOI
IF (x < y) THEN -1 1 -2 3 -4

FOR i = 1 TO 10 DO -2 1 -3 4 -6
x = x + 1; -3 2 -5 5 -8
y = y * 2; -3 2 -5 5 -8
z[i] = i; -3 2 -5 5 -8

END; -2 1 -3 4 -6
>>A m = z[i]; -2 0 -2 4 -6

ELSE -1 2 -3 2 -3
FOR x = 1 TO 10 DO -2 3 -5 1 -3

>>B z[x] = x; -3 4 -7 0 -3
END; -2 3 -5 2 -4

END; -1 2 -3 3 -4

Table 2
A nonsense program segment with API, Distance and DOI values for focal points
A and B.

In Jaba, the DOI formula’s automatic selection of chunks for suppression does
not affect the user’s ability to explicitly tailor the level of detail in the display
through the hypertext links or graphical overview.

14

Fig. 11. Depicting and linking overriding methods (method paint).

3.6 Other Capabilities

3.6.1 Superclasses and method overriding

Jaba automatically provides hyperlinking to super classes, super constructors
and overridden methods. Text referring to super classes and super-constructors
is coloured green for consistency with links to other object classes and their
methods (Section 3.1). Overriding methods are linked with the method that
they override by a small up-arrow icon which is displayed in the text immedi-
ately after the name of the method (see method paint in Figure 11).

3.6.2 Dynamic parsing of text additions

As the user types new program lines into the text editor, the lines are auto-
matically parsed and the necessary hyperlinks are added. Currently each line
is parsed only when the newline key is pressed. This will often be too late to
help programmers who want to use the object’s methods within the current
line. Ideally, Jaba would allow users to dynamically select methods or data-
fields from menus associated with each object variable in a similar manner to
that supported by systems like JBuilder 4 , VisualCafé 5 and Visual J++ 6 .

3.6.3 Linkages with the Java Compiler and Virtual Machine

Jaba is linked with the Java compiler and virtual machine. If the class dis-
played in a Jaba window contains a main method, then the ‘Compile and Run’
menu option under the ‘File’ menu is active. Selecting this option compiles all
of the classes necessary to run the class, and runs the program in the Java

4 JBuilder is a registered trademark of Borland International Inc.
5 Visual Café is a trademark of Semantec.
6 Visual J++ is a trademark of Microsoft Corporation.

15

virtual machine.

4 Design Considerations

This section discusses the major design considerations that shaped the design
and implementation of Jaba. By making Jaba’s design rationale explicit we
aim to aid the reusability and repeatability of the work on Jaba. The de-
sign considerations, discussed in Sections 4.1 to 4.3, are separated into three
categories that address the following questions:

(1) How should program abstractions (or chunks) be formed?
(2) How should the user interface support tailoring levels of program detail?
(3) What additional program interlinking capabilities are required?

4.1 Forming abstractions in the program

In order to allow the user to tailor the level of program detail, systems such as
Jaba must form a structural representation of program content. There are
many possible approaches to extracting this structural information. Liter-
ate programming systems such as noweb (Section 2.1), for example, require
that the structural information is explicitly specified by user-defined textual
markup in the program source. Other systems automatically extract struc-
tural information using knowledge of the syntactic rules of the programming
language (Section 6). Jaba uses a hybrid of these approaches, automatically
detecting ‘natural’ abstractions in the program code (such as methods, loops
and conditionals), while also permitting the user to explicitly add their own
abstractions.

A more complex issue is how to apply literate programming chunking con-
cepts within an object-oriented programming environment. Knuth described
literate programming as an alternative to top-down or bottom-up design, al-
lowing programs to be expressed and read in a ‘psychologically correct order’.
Object-oriented programming, in contrast, focuses on reuse of well encapsu-
lated individual object descriptions; small program units then tie the objects
together into programs. Object encapsulation makes the notion of a ‘psycho-
logically correct order’ a weak one in object-oriented programming.

In designing Jaba, we decided to limit chunk encapsulation mechanisms to the
text contained within individual Java class files. The primary motivation for
this decision stems from concerns about the programmer’s familiarity with the
class representation provided by the system. Each Jaba text-editing window

16

is limited to the same text extent as the flat text-editors that programmers
would normally use to edit Java classes, consequently once all chunks are
expanded each window provides a ‘standard’ flat text representation of the
class contents. If Jaba’s editing windows could include text segments from
more than one class file (through a sophisticated implementation of literate
chunking structure) then there would be a potentially confusing inconsistency
between the contents of the window display and the user’s knowledge of what
‘should’ be contained in Java class files.

4.2 Interface for tailoring levels of detail

There were two major considerations in designing the interface for tailoring
the level of program detail revealed. First, where and how to reveal the details
of expanded chunks, and second, what events should trigger chunk expansion
and contraction.

Østerbye’s [20] hypertext system for object-oriented literate programming in
Smalltalk displayed each expanded chunk in a new window. Jaba, in contrast,
displays the content of each newly expanded chunk in-line within the text-
editor window in a manner that is similar to folding editors. Three factors
motivated this decision. First, creating a new window for each new chunk is
likely to raise a substantial user-interface overhead in window management. In
the worst case, n classes each with m chunks will result in n×m windows. With
in-line expansion, the maximum number of windows is equal to the number
of class files. Second, an in-line representation of the class file is likely to be
more familiar to programmers than the fragmented view provided by multiple
windows because when all chunks are expanded in-line the window provides
a standard ‘flat’ text editor. Third, in-line expansion maintains the context
of each node within its surrounding information space. Chunks may be co-
located within the class file for specific reasons—in-line expansion maintains
this co-location but separate windows would not. Finally, Jaba’s interactive
graphical representation of chunking structure is intended to aid perception
of the structural relationship between chunks in the class file.

In determining what events should trigger chunk expansion and contraction,
we strongly favoured explicit user control over the level of detail revealed.
Implicit schemes—such as the automatic suppression of chunks when users
relocate their focus in Furnas’s original fisheye view system—will sometimes
incorrectly suppress chunks that the user wishes to see (the DOI formula is
a heuristic assessment of likely interest). In Jaba, the main mechanism for
control over the level of detail is through explicit selection of chunk names,
in either the graphical overview or in the text-editor. Even when the fisheye
view mechanism is activated (Section 3.5), explicit user selection of chunk

17

names overrides the level of detail provided by the DOI formula. A further
enhancement, not yet implemented in Jaba, would be to allow the user to lock
certain chunks so that they cannot be expanded or contracted by the DOI
formula.

4.3 Additional hypertext interlinking

Section 4.1 discussed the design rationale for choosing to limit Jaba to intra-
rather than inter-class chunk structures. A consequence of this decision is
that inter-class relationships must be managed through other mechanisms.
Jaba parses all object variable declarations and instantiations, and these are
linked to appropriate classes. Clicking the hypertext link associated with the
class name causes either the class to be displayed in a Jaba window or the
javadoc for the class to be displayed in the javadoc window (and/or Netscape
according to the set options). Method invocations from object variables are
also linked to the associated classes, but access to data-fields from object
variables are not. The rationale behind this decision was a trade-off between
the utility of linking to data-fields and the display clutter of adding more links
to the class display. Further enhancements to the object interlinking, not yet
supported by Jaba, include dynamic selection of object methods from pop-up
menus associated with object variables in a manner similar to that provided
by commercial systems such as JBuilder, VisualCafé, and Visual J++.

5 Discussion and Further Work

Table 3 provides a summary of Jaba’s interface and functionality across eleven
categories of system properties that we believe are desirable. These properties
provide a distillation of our experiences in designing, implementing and us-
ing Jaba, combined with recommendations extracted from related work. Only
properties 10 and 11, clarified in the table, have not been introduced in preced-
ing sections of the paper. Summary information for Visual J++ is included in
the table to help clarify Jaba’s primary differences from a current commercial
system.

Commercial systems such as JBuilder, VisualCafé and Visual J++ support
some of the features offered by Jaba, and they offer other capabilities that
Jaba does not yet support (see Table 3). In particular, Jaba’s text-editing
capabilities are rudimentary, and it is unlikely that commercial programmers
would be willing to exchange their proprietary software development environ-
ments for Jaba. Commercial development, however, was not a design goal.
Rather, Jaba explores new interface paradigms for visualising, browsing, edit-

18

ing and documenting object-oriented programs, and it demonstrates powerful
capabilities for working with programs at configurable levels of detail. Such
capabilities are not yet available in commercial packages.

There are many potential directions for further work. Jaba’s text-editing envi-
ronment could be improved to bring it closer to commercial systems, and more
work on its typographical display of programs (property 11) would improve
program visualisation. Another area for further work on the system would be
to allow user-defined chunk types to be created (beyond the five identified in
Section 3.1). This would enable a wide range of new capabilities: in particular,
it could be used to support different documentation perspectives on the same
code chunk, such as ‘exposition’ and ‘rationale’ perspectives [20].

The major focus of further work will be on evaluation. The most important
question to be addressed is the following:

do the interface and cognitive overheads of defining and configuring levels
of abstraction outweigh the quantitative and qualitative benefits?

Quantitative benefits can be explored in a similar manner to Furnas’s [8]
investigation of search times and error rates in ‘flat’ text displays versus fisheye
displays. Upcoming evaluations will measure search times and error rates in
finding lines of program code that cause Java compilation errors. Qualitative
measures include the users’ perceptions about the usability of the system, and
the perceived ‘quality’ of documented programs produced with the system.

6 Related Systems

The Tioga editor within the Cedar programming environment [27] stored doc-
uments in a tree structure of nodes. This allowed users to successively reveal
levels of document details, or all levels up to a certain depth. Although users
were able to expand and contract global levels of details, it appears that they
were unable to selectively inspect inner levels of detail along a specific branch.
This limitation would prohibit the simultaneous visualisation of the details
of two distant regions in the document. It is not clear from the paper how
Tioga’s abstraction capabilities were applied to program code.

Several systems have applied holophrasting techniques (Section 2.2) to pro-
gramming languages. The contraction and expansion of text within programs
can be based on program constructs such as statement blocks and proce-
dure definitions, or on the formal properties of the programming language’s
grammar. BNF syntactic rules specifying the allowable derivations from ‘non-
terminal’ symbols to lower-level non-terminals and to ‘terminals’ can be used

19

Property Jaba J++ Comment on Jaba’s support

1. Integrated environment for
editing and browsing

✔ ✔ Supports “abstracted” browsing of documentation as well as editing
details (unlike Javadoc which only supports abstracted browsing).

2. Automatic extraction of se-
mantic ‘abstractions’

• Methods ✔ ✔

• Loops and conditionals ✔ ✗

• User-defined chunks ✔ ✗ Users can group related units of code into “chunks”, and they can
define documentation chunks. Chunks can be nested.

3. Light-weight creation of ab-
stractions

✔ ✗ Existing text can be chunked by selecting it, making a menu-selection
and naming the chunk.
Chunks can be created in advance of text by menu-selection and nam-
ing.
User-defined abstractions can be classified as ‘generic’ or ‘documen-
tation’.

4. Easy transition between levels
of abstraction

✔ ✔ Hypertext links in text window expand and contract chunks.
Plus/minus icons in graphical tree window expand and contract
chunks.
Shortcuts to expand/contract all chunks of specific types.
Shortcuts to previously visited levels of abstraction.
Option for automatic detail configuration through fisheye view.

5. In-line expansion of abstracted
details

✔ ✗ Extent of expanded region denoted by temporary shading.

6. Support interactive visualisa-
tions of the object structure

✔ ✔ Dynamic configuration of graphical tree to reflect program display.
Navigational shortcuts through graphical tree.
Icons provide semantic information about chunk types.

7. Contextual information about
suppressed code

✔ ✗ Tailorable font-size for abstracted text: invisible, tiny and legible.
Tailorable representation of context (extent, structure, and contents)
of suppressed code.

8. Context-sensitive hypertext
linking between classes

✔ ✔ ✗ Hyperlinks dynamically computed for super classes, super construc-
tors, over-ridden methods, object variable declarations and instantia-
tions, and method invocations.
Automatic display of associated method in Jaba window or in javadoc
on following a method invocation link.
J++, VisualCafé, etc, provide method name completion (which Jaba
does not), but do not support hypertext navigation to the class.

✗ Jaba’s identification of over-riding methods currently limited to one-
level of inheritance.

9. Integration with existing tools ✔ ✔ Integrated with java tools (javadoc, compiler, and virtual machine).
Integrated with Netscape for display of javadoc.

✗ Jaba is not readily adaptable to other languages. Although its
techniques are adaptable, it has not been written in a language-
independent manner.

10. Non-intrusive support ✔ ✔ Fully expanded views provide a generic ‘flat’ text editor that does not
require users to adopt the abstraction and chunking features.

11. Enhanced presentation of
source text

✗ ✔ Only minimal adoption of program display principles such as those of
[1,2].
Semantic information currently captured by Jaba could allow im-
proved presentation in future work.

Table 3
Summarising Jaba’s capabilities, and comparing them to a standard commercial
software development tool (Microsoft’s Visual J++).

20

to store the program as a hierarchy of specialisation. In the EMILY system
[10], for instance, users constructed, modified, and visualised program text
through BNF-based holophrasts. The primary difficulty with grammar-based
holophrast abstractions is that they require programmers to work through the
formal levels of language. Programmers must therefore have a thorough knowl-
edge of the language’s grammar, and they cannot make ‘shortcuts’ through the
levels of syntactic decomposition—for instance, even if the programmer knows
that she wants an if statement she must still navigate through the syntactic
rules that expand the grammar’s non-terminals into an if statement.

None of the systems reviewed above, nor the fisheye program visualisations
presented in Section 2.3, provide contextual information about the contents
of abstracted units when they are suppressed. Holophrasting, folding editors
(such as Tioga) and Furnas’s program fisheye views totally elide [2] suppressed
text, replacing it with ellipses. They therefore offer no indication of the extent,
contents and structure of the suppressed program fragments. Smith, Barnard
and Macleod [26] described a variant holophrasting text suppression technique
called ‘compaction’ in which line-breaks are removed to display several lines
of code on the same line. The tailorable views of suppressed details offered
by Jaba are, to our knowledge, the first investigation into the use of scalable
fonts in support of contextual awareness in programming environments.

Several researchers have investigated fisheye-based text visualisation. Keahey
and Marley [13] performed an experiment with a variation of fisheye text to
determine its effectiveness in helping users search through structured text. The
results indicate that users preferred fisheye views for certain searching tasks,
but that none preferred it for reading. Their implementation of the fisheye
scheme was unusual in that text suppression was achieved by decreasing (to
negative values) the text’s inter-line gap. This caused dense text that wrote
over the top of neighbouring lines 7 .

Scalable fonts can be reduced to one pixel per line of text, but even at this
severe level of miniaturisation it will be impossible to display large text files
within a single display space without scrolling. The Information Mural [12],
however, demonstrates a variety of display scaling techniques including text
display schemes that require less than one pixel per line.

Within synchronous groupware research, several prototype fisheye text sys-
tems have been developed to experiment with new ways of allowing users to
stay aware of each others’ actions in shared text-based information spaces
[9,28]. These prototypes are not programming environments, nor do they pro-
vide any support for moving between levels of abstraction. They do, however,
support tailorable levels of text magnification in a similar manner to Jaba.

7 Jaba assigns different font-sizes for the levels of magnification it supports, there-
fore text is not over-written.

21

Together/J 8 [19] is an extensive commercial Java and C++ software devel-
opment environment. It integrates many of the capabilities of UML object
modelling [4] including package and class diagrams into its support for Java
programming. Modifications within Together/J’s text editor are immediately
reflected in the corresponding class-diagram editors, and vice-versa. Equivalent
capabilities could (and should) be supported by Jaba. The levels of abstrac-
tion supported by Together/J’s class diagram editors are equivalent to those
of javadoc—package and class. Users are unable to create new abstractions
that correspond to their own cognitive units in the program, nor can users
successively reveal inner levels of detail within the abstractions supported by
the system.

7 Summary

The Jaba system presented in this paper demonstrates a novel and syner-
gistic integration of four user-interface techniques that have been proposed
to assist programmers: literate programming, holophrasting displays, fisheye
visualisation techniques and hypertext. Literate programming supports pro-
grammers in dividing their programs into cognitive ‘chunks’ that are linked
to other chunks. Holophrasting displays allow programmers to tailor the level
of detail revealed in an information space by suppressing portions of the text.
Fisheye techniques provide sophisticated visualisations of suppressed text that
offer a trade-off between the provision of contextual information and use of
display space. The integration of these techniques in Jaba enables program-
mers to configure their displays to reveal only the program details that are
salient to their task while suppressing superfluous ‘clutter’. Contextual infor-
mation on the extent, structure and contents of the suppressed program text
can be displayed through customisable miniaturised renderings of the text.
Extensive automatically generated hypertext links facilitate rapid navigation
between different levels of detail and between interlinked object classes and
their contents.

To date Jaba is a proof of concept system that has been used to edit and
modify several small Java programs (up to eight classes and around one thou-
sand lines). It has a polished and comprehensive user interface. Although
implementation details such as the absence of integrated debugging support
and its relatively crude text-editor constrain Jaba’s viability in commercial
software development, there are no reasons why the abstraction, visualisation
and hypertext techniques demonstrated by the system should not scale-up
successfully.

8 Together/J is a registered trademark of Object International, Inc.

22

Acknowledgements and Software Availability

This research is supported by New Zealand Marsden Fund grant number
UOC805. Many thanks to Saul Greenberg at Calgary, Gerhard Fischer and the
L3D research group at Boulder, Kai-Uwe Loser at Dortmund, and Warwick
Irwin at Canterbury for comments on this work.

Jaba is written in five thousand lines of Tcl/Tk [21]. It is available free of
charge from the author.

References

[1] R Baecker and A Marcus. Design principles fo the enhanced presentation of
computer program source text. In Human Factors in Computing Systems III.
Proceedings of the CHI’86 conference., pages 51–58, 1986.

[2] RM Baecker and A Marcus. Human Factors and Typography for More Readable
Programs. Addison-Wesley, 1990.

[3] DR Barstow, HE Shrobe, and E Sandewall, editors. Interactive Programming
Environments. McGraw-Hill, 1984.

[4] G Booch, I Jacobson, and J Rumbaugh. The Unified Modeling Language User
Guide. Addison-Wesley, 1998.

[5] A Cockburn and N Churcher. Towards literate tools for novice programmers.
In ACM Australasian Computer Science Education Conference ’97. Melbourne,
Australia. 2–4 July., pages 107–116. ACM Press, 1997.

[6] J Conklin. Hypertext: An introduction and survey. IEEE Computer, 20(9):17–
41, 1987.

[7] L Friendly. The design of distributed hyperlinked programming documentation.
In Proceedings of the International Workshop on Hypermedia Design,
Montpellier, France, 1-2 June, pages 151–173. Springer, 1995.

[8] GW Furnas. Generalized fisheye views. In Human Factors in Computing
Systems III. Proceedings of the CHI’86 conference., pages 16–23. Amsterdam;
North Holland/ACM, 1986.

[9] S Greenberg, C Gutwin, and A Cockburn. Awareness through fisheye views in
relaxed-WYSIWIS groupware. In Proceedings of Graphics Interface Conference.
21–24 May, Toronto, Canada., pages 28–38. Morgan-Kaufmann, 1996.

[10] WJ Hansen. User engineering principles for interactive systems. In
DR Barstow, HE Shrobe, and E Sandewall, editors, Interactive Programming
Environments, pages 288–299. McGraw-Hill, 1984.

23

[11] M Heinrichs. Evaluating a focus+context zoom interface in complement with
hypertext as a program understanding tool,
1998. MSc Thesis. Computer Science, Simon Fraser University, Vancouver.
http://www.cs.sfu.ca/~heinrica/personal/CZoom/

[12] DF Jerding and JT Stasko. The Information Mural: A technique for displaying
and navigating large information spaces. IEEE Transactions on Visualization
and Computer Graphics, 4(3):257–271, 1998.

[13] TA Keahey and J Marley. Viewing text with non-linear magnification: An
experimental study. Technical report, Computer Science, 215 Lindley Hall,
Indiana Univeristy., 1996.

[14] D Knuth. Literate Programming. Stanford, California: Center for the Study of
Language and Information. CSLI Lecture Notes, no. 27., 1992.

[15] DE Knuth. Literate programming. The Computer Journal, 27(2):97–111, 1984.

[16] J Lamping, R Rao, and P Pirolli. A focus+context technique based on
hyperbolic geometry for visualising large hierarchies. In Proceedings of CHI’95
Conference on Human Factors in Computing Systems Denver, May 7–11, pages
401–408, 1995.

[17] YK Leung and M Apperley. A review and taxonomy of distortion-oriented
presentation techniques. ACM Transactions on Computer Human Interaction,
1(2):126–160, 1994.

[18] S Mukherjea and Y Hara. Focus+context views of world-wide web nodes. In
Proceedings of the ACM Hypertext’97, University of Southampton, UK, April
6-11, pages 187–196. ACM Press, 1997.

[19] Object International, Inc. Together/J product family.
http://www.togetherj.com/, 1999.

[20] K Østerbye. Literate smalltalk programming using hypertext. IEEE
Transactions on Software Engineering, 21(2):138–145, 1995.

[21] JK Ousterhout. An Introduction to Tcl and Tk. Reading, MA: Addison-Wesley,
1993.

[22] N Ramsey. Literate programming simplified. IEEE Software, 11(5):97–105,
1994.

[23] M Sarkar and MH Brown. Graphical fisheye views of graphs. In Proceedings of
CHI’92 Conference on Human Factors in Computing Systems Monterey, May
3–7, pages 83–91. Addison-Wesley, 1992.

[24] D Schaffer, Z Zuo, S Greenberg, L Bartram, J Dill, S Dubs, and M Roseman.
Navigating hierarchically clustered networks through fisheye and full-zoom
methods. ACM Transactions on Computer Human Interaction, 3(2):162–188,
1996.

24

[25] B Shneiderman. Direct manipulation: A step beyond programming languages
(excerpt). In RM Baecker and WAS Buxton, editors, Readings in Human-
Computer Interaction: A Multidisciplinary Approach, pages 461–467. Morgan
Kaufmann, 1987.

[26] SR Smith, DT Barnard, and IA Macleod. Holophrasted displays in an
interactive environment. International Journal of Man-Machine Studies,
20:343–355, 1984.

[27] W Teitelman. A tour through Cedar. IEEE Transactions on Software
Engineering, 11(3):285–302, 1985.

[28] P Weir and A Cockburn. Distortion-oriented workspace awareness in DOME.
In People and Computers XII (Proceedings of the 1998 British Computer Society
Conference on Human-Computer Interaction.) Sheffield Hallam University,
Sheffield., pages 239–252. Springer-Verlag, 1998.

25

