
Cleogo: Collaborative and Multi-Metaphor

Programming for Kids

Andy Cockburn∗

Department of Computer Science
University of Canterbury

Christchurch, New Zealand
andy@cosc.canterbury.ac.nz

+64 3 364 2987/2569 (voice/fax)

Andrew Bryant
Department of Psychological Medicine

Christchurch School of Medicine
Christchurch, New Zealand

abryant@chmeds.ac.nz
+64 3 364-0640/372-0407 (voice/fax)

Abstract

Cleogo is a novel groupware environ-
ment that allows several users to simul-
taneously develop programs through
any mixture of three alternative pro-
gramming metaphors: a direct ma-
nipulation language for programming
by demonstration; an iconic language;
and a standard text-based language.
Cleogo is motivated by the pedagogi-
cal values of peer-learning and of col-
laborative problem solving, and by our
desire to investigate flexible and ap-
propriate user-interfaces for program-
ming, particularly for youthful users.
Through its real-time groupware facil-
ities Cleogo provides a shared conver-
sational artifact around which students
can talk, gesture and work on program-
ming tasks. Its three concurrently ac-
tive programming metaphors allow stu-
dents to choose a method of program
expression that best suits their task and
skill level. Critical issues in the design
and motivation of Cleogo are described.

Keywords: Collaborative programming, multi-
paradigm programming, real-time groupware,
user interface design, educational environments.

1 Introduction

There is little doubt that computer literacy will
be an essential skill in the coming millennium.
Computers are embedded into many household
appliances such as video recorders and cookers,
and the advent of “ubiquitous computing” tech-

nologies (Weiser 1993) indicates that comput-
ing devices will continue to pervade our lives at
home and at work. People lacking the ability
to communicate with, or program, these devices
are likely to be severely disadvantaged.

We are investigating novel interfaces that
help people, particularly children, to learn how
to program computers. Our work on Cleogo, a
groupware multiple-paradigm programming en-
vironment, is motivated by two mutually rein-
forcing philosophies. First, from a pedagogical
perspective, we firmly believe in the value of
peer-learning and collaborative problem solving.
Collaborative problem solving prompts learners
to “express beliefs in ways that serve to organize
what they know and to identify gaps in their
understanding” (Edelson, Pea & Gomez 1996).
Cleogo’s real-time groupware facilities in which
each student has their own screen, keyboard
and mouse allow it to serve as a “conversa-
tional prop” (Hill, Brinck, Patterson, Rohall &
Wilner 1993) around which users can talk, ges-
ture and problem solve.

Second, we are interested in providing “ap-
propriate” interfaces for end-user programming.
We do not believe that any single program-
ming paradigm can suit all tasks and all
users. Instead, we provide three equivalent and
mutually consistent programming paradigms—
programming actions expressed as input in any
one of the paradigms cause corresponding out-
put expressions in the other two paradigms. The
three programming paradigms are a standard
text-based language, an iconic language and a
direct manipulation environment for program-
ming by demonstration. Users are free to select

∗Author for correspondence.

1



whichever paradigm best suits their task or their
skill level. Cleogo’s groupware facilities ensure
that one user’s programming actions are imme-
diately communicated to all other users.

The structure of the paper is as follows. Sec-
tion 2 reviews related work on groupware edu-
cational systems and on novel programming en-
vironments for children. Cleogo and its design
rationale are described in section 3. Issues of
evaluation and further work are discussed in sec-
tion 4, and section 5 summarises the paper.

2 Background

Cleogo’s motivation and design draws on three
main areas of related work.

Learner centred design (Soloway & Pryor
1996) emphasises the role of technology in
enabling new styles of learning, particu-
larly group learning, that are tailored to
the needs, skills and interests of the learn-
ers.

Novel programming paradigms investigate
new ways of issuing sets of instructions
to computers, such as programming by
demonstration and visual means of pro-
gram specification. Several systems focus
on providing programming environments
that are tailored to the needs of children.

CSCW and groupware investigate the sub-
tleties of making computer systems usable
by groups of people.

This section reviews related work on learner
centred design and on novel programming envi-
ronments. Related work on groupware design
is incorporated into Cleogo’s design rationale
which is described in section 3.

2.1 Learner Centred Design

Papert’s visionary work with Logo (Papert 1980)
stimulated substantial interest in the role of
computers in education. Based on a Piage-
tian pedagogical philosophy (Gruber & Voneche
1987), Papert argued that Logo could provide
a foundation, or “seed”, for a constructivist ap-
proach to learning in which children test person-
ally derived hypotheses using simulations that
they create within Logo’s “microworlds”. Edu-
cationalists’ opinions on the pedagogical value
of Logo differ enormously, from fervent followers
to skeptics (Maddux 1985). It is clear, however,
that Logo’s original interface (command line and

primitive graphics) was severely constrained by
the lack of processing power.

In the 1990s the availability of abundant
processing power effectively removes these con-
straints. As a result, there has been a resurgence
of interest in computer support for education
that is encapsulated by the banner term “learner
centred design” (Soloway & Pryor 1996). Fur-
thermore, with many politicians advocating In-
ternet connected computers in every classroom
(for instance, US President Bill Clinton’s 1996
State of the Union address), there is substantial
interest in the new styles of collaborative educa-
tional software that are enabled by the Internet.

Norman & Spohrer (1996) argue that educa-
tional systems need to satisfy three fundamental
requirements: engagement, effectiveness and vi-
ability. Engagement at the interface critically ef-
fects student motivation levels. “Effectiveness”
concerns the educational content of the environ-
ment. “Viability” concerns the practicality of
the system: whether it is affordable, extensi-
ble, and so on. Norman and Spohrer note that
although computers in the classroom are cer-
tainly engaging, their effectiveness and viability
are much harder to assess.

Most of the collaborative educational sys-
tems developed to date are shared hypertex-
tual databases, such as CSILE (Scardamalia &
Bereiter 1996) and the Collaboratory Notebook
(Edelson, O’Neill, Gomez & D’Amico 1995).
Our interests with Cleogo’s groupware proper-
ties concern real-time collaboration in which all
users are simultaneously aware of each other’s
actions and can freely share all of the system’s
controls. The Color Matcher (Bricker, Tani-
moto, Rothenberg, Hutama & Wong 1995) was
developed to examine collaboration styles during
simultaneous activity. It allows three students
to collaboratively merge Red, Green and Blue
colour values to match a ‘target’ colour, but it
is highly constrained in that each user can only
manipulate a single pre-assigned colour control.
The domain extent of the Color Matcher is also
severely constrained. TurboTurtle (Cockburn &
Greenberg 1997) provides a fully collaboration-
aware real-time Newtonian microworld in which
all students share control of the physical proper-
ties of a “turtle”, such as its velocity, mass, size
and the force of a rocket on its back. Although
certainly engaging, its pedagogical effectiveness
has not been evaluated, and its viability is con-
strained by the in-built Newtonian domain.

To our knowledge, Cleogo is the only real-
time collaborative programming environment
for children.

2



2.2 Novel Programming Paradigms

Logo’s turtle graphics output was intended to
motivate children and to provide a concrete
metaphor for the results of program execu-
tion. Logo’s input language, however, was a
standard text-based command language and al-
though meaningful mnemonics replaced abstract
command codes (such as “FIRST” instead of
Lisp’s “CAR”), typing and memorising com-
mand languages can be burdensome for youthful
users. Many systems have investigated interface
improvements for children’s programming envi-
ronments. Some of these systems are reviewed
below.

AlgoArena (Kato & Ide 1995) aims to in-
crease the motivation of student programmers
by enhancing the graphical output of programs.
Based on a sumo-wrestling simulation, students
program the properties of sumo-wrestlers, and
animated graphical output shows the execution
of the specified behaviour. AlgoArena’s input
language is a text-based dialect of Logo.

AlgoBlock (Suzuki & Kato 1995) is another
Logo-based programming environment which
can be used by very young users. AlgoBlock’s
input language is made tangible and concrete by
using electronic building blocks which are con-
nected to form a series of instructions. The exe-
cution of the program is displayed on a computer
monitor. The expression syntax in the language
is very limited, but AlgoBlock’s large building
blocks allows several students to work together
around a table during the construction of pro-
grams.

KidSim1 (Smith, Cypher & Spohrer 1994) is
an exciting and radical departure from Logo-
based educational programming environments.
Derived from work on visual programming and
programming-by-demonstration (Cypher 1993),
KidSim programmers use “graphical rewrite
rules” to specify before-and-after conditions that
change the state of the visual display. While
KidSim’s clock runs, any time the before image
is generated in a portion of the display, it is re-
placed with the after image, and the new state
of the display may trigger subsequent before con-
ditions. Abstraction and parameterised values
are supported in the environment and “prop-
erty tests” can be used to trigger conditional
branches. Now a commercial product from Ap-
ple, KidSim is likely to become many people’s
first programming environment.

ToonTalk (Kahn 1996) is a further extension
of programming-by-demonstration in which the

programmer issues instructions to a robot which
operates within a simulation of a city. Video-
game technology is used throughout the simula-
tion to maximise engagement at the interface.

In almost all cases, systems that provide
a novel method of program expression support
only a single syntax for articulating the program.

3 Cleogo

Cleogo is substantially different from any of the
systems reviewed in the previous section. First,
it is fully group-aware, allowing distributed users
to simultaneously develop programs and observe
their execution. Second, because Cleogo sup-
ports three alternative paradigms for program
expression, its users are free to choose whichever
paradigm best suits their current task and their
skill-levels. Users can fluidly intermix any of the
three paradigms at any time.

The following two sections describe first,
Cleogo’s three programming environments, and
second, its support for collaboration.

3.1 Multiple Programming
Paradigms

Cleogo is a collaborative version of the single-
user system Leogo. Leogo’s design and evalua-
tion is described in Cockburn & Bryant (1996)
and Cockburn & Bryant (1998). Cleogo’s mul-
tiple programming paradigms are identical to
those of Leogo, but they are described here for
completeness.

Cleogo’s programming domain is similar to
that of Logo (section 2.1. One user’s view of
Cleogo is shown in figure 1. The three pro-
gramming environments are, from left to right,
the iconic programming environment, the direct-
manipulation environment for programming by
demonstration and the text-based environment.
Each environment is briefly described below.

Text-based programming. The text-based
environment (right hand side of figure 1) sup-
ports a standard dialect of Logo, without list
processing commands. Program lines are typed
into the text-entry widget at the bottom of the
screen and are executed when the user clicks the
“Do It” button or when they press the return
key. The history of previously executed com-
mands, which may have been expressed in any
of the paradigms, is shown in a scrollable list-
box. Users can re-execute lines or sequences of

1Renamed Cocoa.

3



Figure 1: Cleogo’s three programming paradigms: iconic, direct manipulation and textual.

lines in the history list through a point and click
interface.
Iconic programming. The left-hand window
of Figure 1 provides iconic representations of all
of Cleogo’s language elements. Iconic mecha-
nisms for Cleogo constructs include mechanisms
for defining new procedures with parameters and
sample parameter values, constructs for creat-
ing repeat loops, constructs for generating con-
ditional statements, a “Calculator” for generat-
ing expressions, mechanisms for calling turtle-
motion procedures, and icons allowing the user
to call user-defined procedures with parameter
values. All iconic programming actions cause
corresponding actions to be displayed in the
text-based programming window and in the di-
rect manipulation programming window.

Parameter values for any procedure call are
set through the slider widgets alongside the pro-
cedure icons. User-defined procedures can dis-
play an arbitrary number of parameter sliders,
but to save screen real-estate procedures defined

within the iconic programming environment are
limited to two parameters.

Cleogo’s calculator (figure 2) provides an
iconic-programming mechanism for entering ex-
pressions such as : size < : height ∗ 5. Expres-
sions are used to determine conditional state-
ments and to give the bounds of REPEAT loops.
The calculator allows local parameters to be in-
cluded in expressions.

To define a new procedure in the iconic pro-
gramming environment the user types the name
of the procedure and its parameters (at the top
of the window). Sample values for each of the
parameters can be set, allowing the user to see
the effect of the procedure while it is defined:
in standard Logo, the effect of a procedure can
only be viewed after it has been defined and
called, making procedure declaration a highly
abstract process. To start recording the proce-
dure, the user clicks the tape-reel icon (top right
hand corner), which becomes animated, and a
continuous whirring sound notifies the user that

4



Figure 2: Cleogo’s calculator for entering expressions.

all actions (which may be expressed in any of
the paradigms) are being encapsulated in the
procedure. To finish recording the user either
clicks the tape icon (in the iconic environment),
types END (in the text environment), or clicks
the tape-stop button in the direct-manipulation
environment. A new button is created at the
bottom of the window to allow the procedure to
be called, and an associated slider is created for
each of the procedure’s parameters.

Direct manipulation programming. In
standard Logo, the middle window of figure 1
would be the output region displaying the turtle-
motion described by a text-based program. In
Cleogo, however, this region supports limited fa-
cilities for direct manipulation programming by
demonstration. Users generate Logo commands
by dragging different segments of the turtle with
the mouse. Corresponding programming actions
that produce identical turtle motion are simul-
taneously displayed in the iconic and text pro-
gramming windows. Dragging the turtle’s head
causes it to rotate on the spot. Dragging its
body causes straight line motion forwards or
backwards, and clicking the turtle’s tail toggles
between Pen-up (no trail on motion) and Pen-
down (leaving a trail).

The tape recording icons at the top of the
window allow the user to record procedures and
to undo and redo previous actions. Undo and
redo are particularly valuable in educational en-
vironments as they encourage students to ex-
plore without concern for the consequences of
erroneous actions. To start recording a set of
actions the user clicks the tape-record icon, and

all actions prior to stopping the tape (in any of
the environments) are encapsulated into a pro-
cedure that is named through a pop-up dialogue
box.

The program expression facilities of the
direct-manipulation environment are weaker
than the other two environments. Parameters,
conditions, expressions and loops are not sup-
ported, and procedures cannot be called directly
from the direct-manipulation environment. For
some time we considered a variety of metaphors
to increase the programming functionality of
the direct-manipulation environment, but rather
than risk weak metaphors and interface kludges
to partially solve these limitations, we decided
to avoid the issue with the philosophy that
certain programming tasks are not suited to
direct-manipulation. Children using the sys-
tem appear to have no problem with the lack of
complete equivalence between the environments
(Cockburn & Bryant 1996).

3.2 Groupware Programming

Our goal in adding groupware facilities to our
earlier system Leogo is to encourage children
to collaboratively solve problems. We do not
intend the collaborative facilities to make pro-
gramming more efficient or effective. Rather, we
want to provide a learning environment which
supports peer learning through the articula-
tion of problem-solving strategies while the chil-
dren manipulate the shared computer-supported
environment. Suzuki & Kato (1995) also in-
vestigate children’s programming tools which
engender collaborative problem solving, but

5



their system, AlgoBlock, enables collaboration
through sharing of physical objects on a work-
surface (section 2). Although physical blocks
have some significant advantages over computer-
supported input mechanisms, there are also sub-
stantial disadvantages, including the separation
of paradigms for input (physical blocks) and out-
put (computer screen), the inability to save and
re-use programs, and the requirement that all
collaborators be co-located.

Each Cleogo user has their own screen, key-
board and mouse, and they share simultaneous
control of all of the interface mechanisms. There
are no built-in limits on the number of simul-
taneous users, but four is a realistic maximum
before degradation of system response begins to
affect collaboration. Users may be co-located
(in the same room), or physically distributed
across the Internet, in which case a separate au-
dio channel (speaker-phone) is required. Most
of Cleogo’s groupware design decisions are gov-
erned by the fundamental requirement that it
serve as a conversational prop around which the
children talk, gesture and work. For this rea-
son, Cleogo is fully WYSIWIS (what you see is
what I see) (Stefik, Bobrow, Foster, Lanning &
Tatar 1987), ensuring that all Cleogo users see
an identical system state. The only relaxation
to the WYSIWIS principle is in the location of
each of the programming windows: users are free
to manage their own screen real-estate without
affecting their colleagues’ window positions.

There are no restrictions on the actions that
each user can make at any time, and there are
no access controls to determine which parts of
the interface each user can manipulate. If two
users simultaneously try to set different values
for a parameter, or if one user tries to make
the turtle walk forward while another makes it
walk backwards, there are no software policies
to resolve the conflict. Although this ‘free-for-
all’ policy may seem to invite conflict, it is a
direct metaphor for real-world activity in which
there are no constraints on simultaneous manip-
ulation of the same artifact (such as a mutually
desired toy). Resolution of conflict is left to the
users through social protocols. The key issue
for the software is to ensure that all users are
aware of each others’ actions. In Cleogo, this
activity awareness is provided by ‘telepointers’
(Tang 1991) which continually show the posi-
tion of each user’s cursor across all of the users’
screens (two telepointers can be seen close to the
turtle in figure 1). Telepointers also carry out a
critical role in supporting the users’ deictic refer-
ences in which verbal utterances such as “this”,

“that” and “put it there” require a gestural ac-
tivity to clarify the statement’s context (Tatar,
Foster & Bobrow 1991).

4 Discussion

A textual description of Cleogo’s interface, such
as that above, does not provide an accurate de-
piction of the users’ sense of engagement that
is engendered by its dynamic, noisy and colour-
ful interface. For instance, consider a group of
users recording a procedure to draw a square.
Once the tape-icon is clicked, all users hear the
whirring sound of the tape reels. One user may
click the ‘REPEAT’ button in the iconic pro-
gramming environment, and another may then
set the value 4 for the loop bound. Another
user may then drag the turtle forward in the di-
rect manipulation environment, and yet another
may turn it 90 degrees by typing the command
into the text-based environment. Finally, one of
the users will end the repeat loop, and another
will click the tape icon to finish the procedure.
These actions could have been expressed in any
of the paradigms, and as soon as the actions are
taken in one paradigm their equivalent expres-
sion is shown in the other two paradigms, both
to the local user and to all other users. It is our
intention that all of these actions will be em-
bedded within extensive discussion about what
to do next, and who should make each of the
actions at the interface.

We have not yet begun evaluating Cleogo,
but the evaluation of it’s fore-runner, Leogo,
was extremely encouraging (Cockburn & Bryant
1996, Cockburn & Bryant 1998), and indicated
that youthful users readily adapt to the avail-
ability of multiple platforms for program expres-
sion. The primary school in which it was tested
is enthusiastic to continue evaluating the system,
and Cleogo will be evaluated during the 1998
academic year.

One major area that we hope to make ob-
servations on during the evaluations is the ef-
fectiveness of collaboration through the multi-
ple programming paradigms. Given that the
simultaneous users of Cleogo may prefer differ-
ent paradigms for program expression, we are
interested to see how well the equal opportu-
nity interface supports the users’ comprehension
of programming tasks in one paradigm while
the task is being expressed through another
paradigm.

6



5 Summary

The Internet is entering the classroom, and net-
worked computers enable many new styles of ed-
ucational collaboration. The extent and nature
of these new styles of collaboration are yet to be
determined.

In this paper we described the motivation
and design considerations that governed the de-
velopment of Cleogo, an innovative system that
aims to ease, motivate and assist the develop-
ment of programming skills. Its groupware facil-
ities allow learners to collaboratively solve pro-
gramming problems: fostering team-work skills,
and promoting peer-learning. Cleogo’s multi-
paradigm equal-opportunity interface for ex-
pressing programs allows collaborating users to
select whichever programming method best suits
their skills and tasks.

Availability

Cleogo is written in Tcl/Tk (Ousterhout 1993)
and GroupKit (Roseman & Greenberg 1996).
Cleogo has been tested on Sun Sparc stations
and on PCs running the Linux operating system.
It is available on request from the first author.

References

Bricker, L., Tanimoto, S., Rothenberg, A.,
Hutama, D. & Wong, T. (1995), Multi-
player activities that develop mathemati-
cal coordination, in ‘ACM Conference on
Computer Supported Cooperative Learning
(CSCL ’95). Bloomington, Indiana. Octo-
ber 17–20, 1995’, Lawrence Erlbaum Asso-
ciates, Inc, pp. 32–39.

Cockburn, A. & Bryant, A. (1996), Do it this
way: Equal opportunity programming for
kids, in ‘OzCHI’96: The Sixth Australian
Conference on Computer-Human Interac-
tion. Hamilton, New Zealand. November
24–27.’, IEEE Press, pp. 246–251.

Cockburn, A. & Bryant, A. (1998), ‘Leogo: An
equal opportunity user interface for pro-
gramming’, Journal of Visual Languages
and Computing . In Press.

Cockburn, A. & Greenberg, S. (1997), ‘The de-
sign and evolution of TurboTurtle, a col-
laborative microworld for exploring new-
tonian physics’, Interactive Learning Envi-
ronments . In Press.

Cypher, A., ed. (1993), Watch what I do: pro-
gramming by demonstration, MIT Press.

Edelson, D., O’Neill, K., Gomez, L. & D’Amico,
L. (1995), A design for effective support of
inquiry and collaboration, in ‘ACM Con-
ference on Computer Supported Coopera-
tive Learning (CSCL ’95). Bloomington, In-
diana. October 17–20’, Lawrence Erlbaum
Associates, Inc, pp. 107–111.

Edelson, D., Pea, R. & Gomez, L. (1996), ‘The
collaboratory notebook’, Communications
of the ACM 39(4), 33–34.

Gruber, H. & Voneche, J., eds (1987), The Es-
sential Piaget: An Interpretive Reference
and Guide, New York: Basic Books.

Hill, R., Brinck, T., Patterson, J., Rohall, S. &
Wilner, W. (1993), ‘The Rendezvous lan-
guage and architecture’, Communications
of the ACM 36(1), 62–67.

Kahn, K. (1996), ‘ToonTalk—an animated pro-
gramming environment for children’, Jour-
nal of Visual Languages and Computing
7(2), 197–217.

Kato, H. & Ide, A. (1995), Using a game
for social setting in a learning environ-
ment: AlgoArena — a tool for learning
software design, in ‘ACM Conference on
Computer Supported Cooperative Learning
(CSCL ’95). Bloomington, Indiana. Octo-
ber 17–20’, Lawrence Erlbaum Associates,
Inc, pp. 195–199.

Maddux, C. (1985), ‘The need for science versus
passion in educational computing’, Com-
puters in Schools 2(2/3), 9–10.

Norman, D. & Spohrer, J. (1996), ‘Learner-
centered education’, Communications of
the ACM 39(4), 24–27.

Ousterhout, J. (1993), An Introduction to Tcl
and Tk, Addison-Wesley.

Papert, S. (1980), Mindstorms — Children,
Computers, and Powerful Ideas, Harvester
Press, Brighton.

Roseman, M. & Greenberg, S. (1996), ‘Build-
ing real time groupware with GroupKit, a
groupware toolkit’, ACM Transactions on
Computer-Human Interaction 3(1), 66–106.

7



Scardamalia, M. & Bereiter, C. (1996), ‘Stu-
dent communities for the advancement of
knowledge’, Communications of the ACM
39(4), 36–37.

Smith, D., Cypher, A. & Spohrer, J. (1994),
‘Kidsim: Programming agents without a
programming language’, Communications
of the ACM 37(7), 55–67.

Soloway, E. & Pryor, A. (1996), ‘The next
generation in human-computer interaction’,
Communications of the ACM 39(4), 16–18.

Stefik, M., Bobrow, D., Foster, G., Lanning,
S. & Tatar, D. (1987), ‘Wysiwis revised:
Early experiences with multiuser inter-
faces’, ACM Transactions on Office Infor-
mation Systems 5(2), 147–167.

Suzuki, H. & Kato, H. (1995), Interaction-level
support for collaborative learning: AlgoB-

lock — an open programming language, in
‘ACM Conference on Computer Supported
Cooperative Learning (CSCL ’95). Bloom-
ington, Indiana. October 17–20’, Lawrence
Erlbaum Associates, Inc, pp. 349–355.

Tang, J. (1991), ‘Findings from observational
studies of collaborative work’, International
Journal of Man-Machine Studies 34, 143–
160.

Tatar, D., Foster, G. & Bobrow, D. (1991),
‘Design for conversation: Lessons from
cognoter’, International Journal of Man-
Machine Studies 34(2), 185–209.

Weiser, M. (1993), ‘Some computer science is-
sues in ubiquitous computing’, Communi-
cations of the ACM 36(7), 75–85.

8


