
Promoting Hotkey Use through Rehearsal with ExposeHK

Sylvain Malacria1 Gilles Bailly2 Joel Harrison1 Andy Cockburn1 Carl Gutwin3

1University of Canterbury, Christchurch, New-Zealand
2Quality and Usability Lab, Telekom Innovation Laboratories, TU Berlin, Berlin, Germany

3Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
sylvain@malacria.fr, andy@cosc.canterbury.ac.nz, gillesbailly1@gmail.com, gutwin@cs.usask.ca

⌘⎇2⌘⇧H

⌘W ⌘M

⌘← ⌘D ⌘T

Figure 1. The user wants to open a new tab but is not sure of the hotkey. He visually locates the button in the toolbar (boxed on left), then presses the
Command key () to activate ExposeHK, which overlays toolbar items with available hotkeys (right). He completes the command by pressing T.

ABSTRACT
Keyboard shortcuts allow fast interaction, but they are known
to be infrequently used, with most users relying heavily on
traditional pointer-based selection for most commands. We
describe the goals, design, and evaluation of ExposeHK, a
new interface mechanism that aims to increase hotkey use. Ex-
poseHK’s four key design goals are: 1) enable users to browse
hotkeys; 2) allow non-expert users to issue hotkey commands
as a physical rehearsal of expert performance; 3) exploit spa-
tial memory to assist non-expert users in identifying hotkeys;
and 4) maximise expert performance by using consistent short-
cuts in a flat command hierarchy. ExposeHK supports these
objectives by displaying hotkeys overlaid on their associated
commands when a modifier key is pressed. We evaluated Ex-
poseHK in three empirical studies using toolbars, menus, and
a tabbed ‘ribbon’ toolbar. Results show that participants used
more hotkeys, and used them more often, with ExposeHK than
with other techniques; they were faster with ExposeHK than
with either pointing or other hotkey methods; and they strongly
preferred ExposeHK. Our research shows that ExposeHK can
substantially improve the user’s transition from a ‘beginner
mode’ of interaction to a higher level of expertise.

Author Keywords
Hotkeys; Keyboard Shortcuts; Rehearsal; Menus; Command
Selection; Novice Mode; Expert Mode.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2013, April 27–May 2, 2013, Paris, France.
Copyright 2013 ACM 978-1-4503-1899-0/13/04...$15.00.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User Inter-
faces. – Graphical user interfaces (GUI).

INTRODUCTION
Hotkeys, also called keyboard shortcuts or accelerators, offer
a shortcut alternative to pointer-based selection of commands
from toolbars and menus. Their efficiency stems from three
mechanical advantages over pointing: first, in many tasks such
as word-processing, the hands rest on the keyboard, so hotkeys
eliminate the need to move the hand to a pointing device and
back; second, they eliminate the need for a pointing round-trip
from the workspace to the control widgets and back; and third,
they allow a wide range of commands to be selected with a
single key combination, thus removing the need to traverse
a menu or tab hierarchy. A variety of theoretical models
(e.g., KLM [7]) and empirical studies (e.g, Odell et al. [24])
demonstrate that hotkeys improve user performance.

Despite this potential, hotkeys are under-used: several studies
have demonstrated that few users employ any form of shortcut
interface [1, 5, 9, 19, 20]. Carroll’s ‘paradox of the active user’
[9] suggests that users are simply too engaged in their tasks
to consider learning alternative strategies or methods, even
if these methods may eventually improve performance. In
addition, keyboard shortcuts require that users learn hotkeys
beforehand, potentially resulting in errors due to incorrect
hotkey/command memory associations.

The poor adoption of hotkeys and other high-performance
interface techniques creates a substantial usability problem.
While the performance difference between hotkeys and pointer-
based commands may be small for some actions, it can be large
when command activation involves hierarchical navigation
(such as a menu-cascade) or when selecting widgets located
far from the workspace. These small performance differences
can compound into substantial effects when multiplied across

mailto:sylvain@malacria.fr
mailto:andy@cosc.canterbury.ac.nz
mailto:gillesbailly1@gmail.com
mailto:gutwin@cs.usask.ca

thousands of daily repetitions. It is therefore important to find
ways of helping users transition from the pointer to hotkeys.

Two recent studies show the state of the art in encouraging
hotkey use. Grossman et al. [12] and Krisler and Alterman
[17] investigated the use of feedback (emphasising the hotkey
after pointer selection) and cost (imposing additional steps to
complete pointer selections) as mechanisms for encouraging
adoption and use of hotkeys, with positive results.

However, these approaches have three substantial limitations.
First, they use pointer-based selection as the starting point
for hotkey presentation (i.e., the hotkey is only shown after
mouse-based selection). Consequently, users reinforce point-
ing even while trying to learn a faster non-pointer method.
Second, cost-based techniques work by penalising pointer se-
lections, rather than by making hotkeys more attractive. For
example, one of Grossman’s successful techniques imposed
a delay after pointer-based selection: the hotkey ‘incentive’
was turning users away from the old technique, rather than
actually improving performance. Third, users are unable to
exploit the spatial-location knowledge developed through prior
pointer-based selection. Users must switch entirely to the new
approach, which usually implies a temporary but substantial
reduction in performance (a ‘performance dip’ [31]) that is
likely to deter hotkey use.

We have developed and evaluated a new method for encour-
aging and improving hotkey use – called ExposeHK (EHK) –
that addresses these issues. When activated with a modifier
key (e.g., the Control key), EHK displays the hotkeys in the
application’s toolbar (see Fig.1), menu, or ribbon. Importantly,
EHK is compatible with existing toolbar and ribbon designs,
and it can be readily adapted to menus.

This work makes three main contributions. First, it describes
design principles for promoting hotkey use. Second, it presents
ExposeHK (EHK) – a system instantiating the principles with
toolbar, menu and ribbon designs. Third, it presents empirical
results showing that EHK promotes earlier and higher levels
of hotkey use, that participants are faster with it, and that they
strongly prefer EHK.

EXPOSEHK: DESIGN GOALS AND RELATED WORK
EHK uses a simple interaction mechanism to promote hotkey
use. While a modifier key is held down, all hotkeys are concur-
rently displayed on top of their graphical controls. Selections
are completed using the hotkey or by pointing.

We implemented and evaluated three forms of the technique
for toolbars (ExposeHKT, see Fig.1), menus (ExposeHKM,
see Fig.6), and ribbons (ExposeHKR, see Fig.9), with details
presented later. This section describes the design goals for
EHK, as well as key associated prior work.

Design Goals
The ultimate objective of EHK is to improve the rate at which
users attain expertise with interfaces, by promoting hotkey use.
Figure 2, adapted from [31], illustrates this idealised objective.
It shows that switching to traditional shortcuts involves a tem-
porary ‘performance dip’ that discourages their use. The dip
occurs because users who are competent with pointer-based

P
er

fo
rm

an
ce

Time

Traditional pointer-based selection Traditional hotkeys

Initial
performance

Extended
learnability

Ultimate
performance

Performance
dip

Id
ea

lis
ed

 perfo
rm

ance curve for ExposeHK

Figure 2. Intended learning curve for ExposeHK, compared with modal-
ity switching (adapted from [31]).

selection must pause, display the hotkey, learn it, and rehearse
the key sequence. With EHK we aim instead to support a
smooth and continual transition to expert performance. We
have four goals to help EHK achieve this objective, as follows.

Goal 1: Enable hotkey browsing
In most contemporary interfaces hotkeys are not displayed
until the user posts a menu item or dwells on a toolbar item
(exceptions, such as Alt keys, are discussed with goal 4 below).
Consequently, learning hotkeys involves moving the cursor to
the point where a simple click would complete the selection
– but then pausing, awaiting the shortcut feedback, and com-
mitting it to memory before proceeding (possibly by clicking
rather than by using the shortcut). These actions can induce a
performance dip (Fig. 2) that discourages hotkey use and traps
the user in pointer-based ‘beginner mode’ [31]. Any memory
errors while learning hotkeys will further inhibit performance.

To avoid this trap, systems should allow users to browse
hotkeys without requiring a pointing action. ExposeHK meets
this goal by showing the hotkeys when a modifier key is
pressed, as shown in Figures 1 and 6. Users can therefore
initiate their command actions using the same modality that
they will ultimately use as experts. Novice users will still need
to visually search for the target interface control, but once
identified, they can press the EHK modifier key to display the
hotkeys underlying the control, avoiding the need to move
the hand to the mouse and point to the target. Furthermore,
EHK does not require that users learn hotkeys beforehand,
avoiding errors due to incorrect hotkey/command memory
associations. By providing a single modality that removes
the need to pre-learn the hotkeys we aim to minimise the
magnitude and deterrent effect of the performance dip (Fig. 2).

Goal 2: Support physical rehearsal
In analysing factors influencing the development of expertise,
Kurtenbach [19] proposed the principle of rehearsal: ‘guid-
ance should be a physical rehearsal of the way an expert
would issue a command’. He deployed this principle in mark-
ing menus, which allow novices to select items by moving the
cursor into one segment of a visually displayed ‘pie menu’ [6]

(a cursor-centred circular arrangement of menu items). Ex-
perts select items using exactly the same physical action (a
directional gesture), but without waiting for feedback.

The potential value of using the same physical action for
novice and expert selections is supported by psychology lit-
erature on automaticity and the power law of practice (see
[32] for a comprehensive review of motor control and learn-
ing). Automaticity [33] represents a high level of attainment in
motor learning, allowing controls to be manipulated without
substantial conscious deliberation. It is characterised by fast
and parallel processing. The key determinant in the develop-
ment of automatic performance is extreme repetition, although
repetition alone is not sufficient for some tasks (e.g., Card et al.
[8] studied one user repeating a text editing task 1100 times,
without observing automaticity). These effects support Kurten-
bach’s principle of rehearsal, yet few shortcut interfaces (other
than marking menus and their variants) exploit the principle.
Traditional hotkey methods require users to discover hotkeys
using a non-hotkey modality (pointing), and consequently
users rehearse pointing, not hotkey use. EHK, in contrast,
allows users to discover and rehearse hotkeys using only the
hotkey modality. Furthermore, EHK is compatible with tradi-
tional interfaces, whereas systems like marking menus require
interface changes (i.e., non-traditional circular menu layouts).

Goal 3: Rapid hotkey identification for intermediate users
When users have an intermediate level of skill, they are likely
to have partial knowledge of their interaction environment.
For example, users may know the spatial vicinity of controls,
even if not their exact location; or they may suspect that a
particular hotkey sequence triggers a needed command, but be
unwilling to execute it without confirmation. EHK leverages
human spatial memory by ensuring that hotkeys are displayed
at the spatial location of the underlying visual control, which
reduces visual search time and allows rapid confirmation of
hotkey bindings.

Goal 4: Stable commands in a flat hierarchy
A key reason for hotkeys’ efficiency is that most hotkey inter-
faces use a single key combination to select a command, in-
stead of a series of several point-and-click activities to traverse
the command hierarchy. For example, the hotkey CTRL-B
may replace two pointing actions for the ‘Font’ menu and
‘Bold’ item. Importantly, not all hotkey methods support hier-
archy flattening. For example, Alt-Key navigation (part of the
accessibility interface in Microsoft Office) displays hotkeys as-
sociated with successive levels of the interface hierarchy when
the ‘Alt’ key is pressed, allowing users to traverse the interface.
Theoretical and empirical results tend to show that selection
time increases with the number of menu levels for experts [10,
31]. In addition, it has been shown that it is difficult to chunk
a multiple-keys sequence into one single cognitive unit when
using Alt-Key navigation [23].

ExposeHK’s hotkey bindings are also stable across invocations
(within an application), which allow users to learn and rapidly
reproduce key sequences. While this may seem an obvious
feature of hotkey interfaces, there are interesting accessibility
interfaces that support some of EHK’s characteristics, but vio-
late this goal. In particular, the ‘show numbers’ [11] interface

in Windows 7 visually overlays each widget with a number
that fades in and out (similar to EHK). Speech input then al-
lows any widget to be selected by reading the number. While
this is a powerful accessibility tool, it violates goal 4 because
the activation numbers change across invocations.

Other related work
There is extensive literature on understanding and supporting
expert performance with user interfaces. This includes work
on user strategies (e.g., [5]), interface techniques that optimise
expert performance (e.g., Flower Menus [3]), techniques sup-
porting transitions from novice to expert performance (e.g.,
Blur [31], Marking Menus [18, 19], and Octopocus [4]), un-
derstanding collaborative skill sharing [25], and supporting
community expertise [22].

Key prior work specifically on hotkeys includes empirical per-
formance comparisons between shortcut techniques including
hotkeys (e.g., [16, 20, 24, 15, 2]) and specialised hardware
promoting hotkey use (e.g., a touch-sensitive keyboard that
highlights on-screen widgets before a key is pressed [28]).
Finally, the two studies most closely related to our objectives
concern the use of interaction cost as a disincentive for pointer-
based selection [12] and the use of feedback to help users learn
hotkey bindings [12, 17]. As summarised in the introduction,
we want to promote hotkeys without requiring pre-learning,
without imposing an explicit cost on pointer-based techniques,
and without the potential distraction of post-action feedback.

USER STUDIES RATIONALE
We conducted three studies to deploy and evaluate Ex-
poseHK with traditional organizations of commands in graph-
ical user interfaces: toolbars, menus, and ribbons. Studies 1
and 2, which respectively used toolbar and menu adaptations
of ExposeHK, focus on goals 1 to 3, which concern promoting
transitions to hotkey use. The primary measure of studies 1
and 2, therefore, is the proportion of commands completed
using hotkeys – these studies answer the question, ‘does Ex-
poseHK promote earlier and increased hotkey use compare to
other methods?’ Study 3 then focuses on goal 4, examining the
performance improvements that ExposeHK can provide when
applied to the Microsoft Ribbon user interface, in comparison
to existing methods.

STUDY 1: TOOLBARS (EXPOSEHKT)
The toolbar version of ExposeHK (ExposeHKT), shown in Fig-
ure 1, overlays the hotkey associated with each toolbar item
when a modifier key is pressed. Study 1 focuses on hotkey
adoption with ExposeHKT compared with traditional tooltips
and audio feedback. Traditional tooltips provide baseline com-
parison with a commercial standard, and audio feedback was
used because Grossman et al. [12] showed it to be an effective
method for promoting hotkey use. The audio feedback con-
dition used voice synthesis to read the hotkey binding when
the pointer clicked the item. Participants in the study were
free to complete selections by pointing to toolbar items or by
invoking hotkeys.

The study was designed to answer several questions about
ExposeHKT in comparison to traditional tooltips and audio-
supplemented hotkey feedback:

Figure 3. Example of a toolbar used in the study (top), and with the ExposeHKT mode on (bottom)

• does ExposeHKT result in earlier and higher levels of hotkey
use?

• how does hotkey use with the three interfaces (ExposeHKT,
audio, tooltips) change with experience and frequency of
item selection?

• does ExposeHKT support faster command selection?
• are errors affected by interface or selection mechanism?
• how are the systems subjectively perceived?

Experimental method
The method was based on Grossman et al.’s [12] hotkey study
with some modifications, as described below.

Task and stimulus. Each task involved selecting a toolbar item
in response to a voice-synthesised audible stimulus that read
the name of one of the targets – Figure 3 shows a toolbar
used in the study. Voice-synthesis was used to ease risks
of confounds stemming from factors such as visual pop-out
effects due to exact matches between the stimulus (e.g., a cat
icon) and its representation in the interface.

The audio stimulus was produced, and task timing began,
when the cursor was inside a 70×70 pixel box in the center
of the screen and the space bar was pressed. The participant
then selected the corresponding item, either by clicking on the
target or by selecting the correct hotkey. As in Grossman et
al.’s study, timing stopped when the user moved the cursor
back to the box and pressed the spacebar, which simulates
a pointing round-trip from the workspace to a control and
back to the workspace. Completing one trial immediately
initiated the next. All user events were logged, including
mouse movement and incorrect selections.

Procedure. Participants completed tasks with all three in-
terfaces: ExposeHKT, audio feedback, and tooltips. In the
ExposeHKT condition, the hotkey binding replaced the corre-
sponding toolbar icon when the control key was pressed. In
the audio feedback condition, voice-synthesis read the hotkey
binding when the user clicked on the item (i.e, after selec-
tion). In the tooltip condition, a tooltip showed the hotkey
immediately when the cursor entered a toolbar item. Imme-
diate display was used (rather than the traditional method of
awaiting a dwell timeout) to maximise hotkey exposure and
minimise the performance penalty for awaiting the tooltip.

Before using each interface participants received brief training
(approximately 30 seconds; data discarded) in which they were
prompted to select one item from a toolbar containing four
items, first using the pointer, and then selecting the same item
using a hotkey. During training, a single sentence was shown
describing how to use the hotkeys: either ‘Hover over the
toolbar item to display the hotkey’, ‘Voice synthesis will read

the name of the hotkey when you select the item’, or ‘Press
the Control key to show the hotkeys’. The potential benefits
of using hotkeys were not mentioned to the participants.

The toolbar used in the study consisted of 25 buttons, with
a different set of buttons for each interface (e.g., Figure 3).
Participants completed six blocks of trials with each interface.
Each block consisted of 24 selections, comprising 12 differ-
ent targets that were selected 8, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1
times each, giving a near-Zipfian distribution (commonly ex-
hibited with command selections, and also used by Grossman
et al. [12]). The same 12 targets with the same frequencies
were repeated in each block. Targets within this distribution
were controlled so that the target appearing 8 times was ac-
tivated by holding the control key and pressing a hotkey in
the left-hand side of the keyboard (Control plus one charac-
ter among q,w,e,a,s,d,z,x,c), the target appearing 4 times was
selected by a key in the right set (u,i,o,p,j,k,l,m), and a target
selected twice was in the middle-keyboard (r,t,y,f,g,h,v,b,n).
The remaining targets were evenly distributed across the left,
middle, and right keyboard sides. Finally, the physical location
of targets in the toolbar was controlled to balance the point-
ing distance for each target of a particular frequency across
interface conditions.

Participants were instructed to complete selections as quickly
and accurately as possible. To discourage ‘racing through’
the study irrespective of errors, each erroneous selection in-
curred a 3 second delay prior to initiating the next task. Once
all blocks with an interface were complete, participants com-
pleted NASA-TLX worksheets [13] for the technique and gave
comments. At the end of the experiment, which lasted approx-
imately 30 minutes, participants ranked their preference for
the interfaces and gave final comments.

Design. The experiment used a 3×6×4 analysis
of variance for within-subjects factors technique
(ExposeHKT, audio, and tooltips), block (levels 1-6),
and frequency (whether the item was selected 1, 2, 4, or 8
times in the block). Order of technique and the dataset used
with the toolbar were counterbalanced across the participants
using a Latin Square. The primary dependent measure was
the proportion of trials completed using hotkeys. Additional
dependent measures included selection time (with error trials
removed) and error rate.

Although the within-subjects factor technique was counter-
balanced, we anticipated the possibility of asymmetric skill
transfer, with particular technique orders differently influenc-
ing performance in subsequent conditions (see [26]). We
therefore analysed factors order and technique, and found a
significant interaction. The results analysis therefore reports

0
0

020
20

2040
40

4060
60

6080
80

80100
10

0
100% of hotkey use

%
 o

f h
ot

ke
y

us
e

% of hotkey use1

1

12

2

23

3

34

4

45

5

56

6

6Block

Block

BlockToolTips

ToolTips

ToolTipsExposeHKt

ExposeHKt

ExposeHKtAudio

Audio

Audio 0

0

020

20

2040

40

4060

60

6080

80

80100

10
0

100% of hotkey use

%
 o

f h
ot

ke
y

us
e

% of hotkey use1

1

12

2

24

4

48

8

8Target frequency

Target frequency

Target frequencyToolTips

ToolTips

ToolTipsExposeHKt

ExposeHKt

ExposeHKtAudio

Audio

Audio 0

0

01

1

12

2

23

3

34

4

45

5

56

6

6Mean selection time (s)

M
ea

n
se

le
ct

io
n

tim
e

(s
)

Mean selection time (s)1

1

12

2

23

3

34

4

45

5

56

6

6Block

Block

BlockToolTips

ToolTips

ToolTipsExposeHKt

ExposeHKt

ExposeHKtAudio

Audio

Audio

Figure 4. Results of Study 1. Left: % hotkey use by block; Center: % hotkey use by frequency; Right: mean time by block. Error bars ±1s.e.

between-subjects treatment of technique, discarding data from
all but the first technique for each participant. For signifi-
cant ANOVA effects, we include partial eta-squared (η2) as a
measure of effect size [29].

Participants and Apparatus. 36 university staff and students
participated, aged 20-45, 6 female. Experimental software,
implemented in Java Swing, ran on Windows XP, using a
1680×1050 22" display, optical mouse, standard QWERTY
keyboard, and earphones.

Results
The overall mean time for a correct item selection was 3.37s
(σ 1.5), with a low overall error rate of 2.8%. Across all
conditions, the mean time to select an item using a hotkey
was 2.74s (σ 0.19), which was 35% faster than pointer-based
selections (4.16s, σ 0.27). The following paragraphs describe
analysis of the dependent measures. Subjective responses for
all studies are reported after Study 3.

Proportion of hotkey use. Figure 4 (left) shows the proportion
of command selections completed using hotkeys with the three
techniques across blocks. With ExposeHKT, 94% of correct
selections were completed using hotkeys, compared with 50%
with audio and only 35% with tooltips (F2,33 = 21.7, p <
.001, η2 = .57). As expected, hotkey use progressively in-
creased across blocks (F5,165 = 39.6, p < .001, η2 = .54)
and across all item frequencies (F3,99 = 31.7, p < .001, η2 =
.49), with infrequent items having lower hotkey selection rates.

Importantly, there was a significant technique×block inter-
action (F10,165 = 6.3, p < .001, η2 = .27). Figure 4 (left)
shows that ExposeHKT users made an early and sustained
switch to hotkeys, contrasting with other techniques’ grad-
ual increase. This suggests that ExposeHKT fulfills goal 1
(supporting hotkey browsing by novices), as over 81% of first
block selections were completed using hotkeys.

Figure 4 (center) shows a significant technique×frequency
interaction (F6,99 = 9.2, p < .001, η2 = .36). While hotkeys
were consistently employed regardless of item frequency with
ExposeHKT, low-frequency items were seldom selected using
hotkeys with tooltip and audio conditions.

Finally, our study replicates Grossman’s finding [12] that au-
dio feedback outperforms standard tooltips.

Item selection time. Figure 4 (right) shows mean selection
times with the different techniques across block. While
there was no significant main effect of technique (F2,33 =
1.09, p = .34), there was a significant technique×block inter-
action (F10,165 = 1.99, p < .05, η2 = .10), stemming from
audio’s slower selection times initial blocks. As expected,
block (F5,165 = 82.8, p < .001, η2 = .71) and frequency
(F3,99 = 89.7, p < .001, η2 = .73) showed significant effects.
Finally, the mean time for pointer-based selections in the final
block (for those who continued to use the mouse with any
technique) was 3.53s, compared to 2.38s with hotkeys.

Error rate. Tooltips, audio, and ExposeHKT had similar error
rates (for both mouse and hotkey selection) of 2.6%, 3.3% and
2.7% respectively, showing no significant main effect (F2,70 =
1.3, p = .28). There was no effect of block (p = 0.24) .

STUDY 2: MENUS (EXPOSEHKM)
Deploying ExposeHK with toolbars is simple because each
icon has a unique spatial location, giving an unambiguous po-
sition for each hotkey when ExposeHK is activated. However,
extending ExposeHK to the large command sets offered by
menus raises design challenges because items can share the
same display location. For example, Figure 5 (left) shows that
the ‘Safari’ menu extends horizontally across ‘File’, ‘Edit’,
‘View’ and ‘History’ menus.

Characterising menu hotkeys
To understand how hotkeys are used in existing menus, and
the degree of overlapping, we wrote a program using the Mac
OS accessibility API to inspect the structure and location of
menus in 30 mainstream Mac applications such as Microsoft
Word and Adobe Photoshop.

The mean number of top-level menus (excluding the global
Apple menu) was 8.97 (σ 1.77), and the mean number of
items in one top-level menus was 10.48 (σ 5.9). The total
number of hotkeys offered by applications ranged from 15 to
112 (mean 55.31, σ 20.53). Across applications, a mean of
77.8% of hotkeys were located in top-level menus, and 22.1%
in second-level menus. The proportion of menu items with
associated hotkeys is 47.6% in top-level menus and 15.4% in
second-level menus.

We calculated the degree of spatial overlapping between items
with hotkeys using heatmap-style data similar to that shown

in Figure 5 (right) for each application. The mean number
of spatial collisions (two overlapping items) between hotkey
items per application was substantial at 23.93 (σ 10.35), and
44.9 (σ 18.78) between a hotkey item and a normal item.

Figure 5. Left: The Safari menu would overlap with File, Edit, View and
History menus. Right: heat map of Safari menus overlapping (red/dark
means more overlap).

Adapting ExposeHK to menus
The primary design concept of ExposeHKM is similar to
ExposeHKT – pressing a modifier key exposes all of the menu
items with associated hotkeys overlaying items, as shown in
Figure 6. Command selections can be completed by press-
ing the hotkey or by using the pointer. Second-level menu
cascades are not displayed, so some degree of pointer-based
selection is still necessary.

ExposeHKM modifies the visual layout of menus to remove
spatial overloading. This is necessary to support hotkey brows-
ing (goal 1) and to help intermediate users exploit their spatial
memory (goal 3). With ExposeHKM, the width of the gap
between top-level menu items is determined by the width of
the longest item with a hotkey in each menu. If a longer item
without a hotkey exists within the menu, the name is truncated
until the cursor hovers over it.

An obvious consequence of this design is that the menubar
width increases. Using data from our menu structure analysis,
we calculated a mean menubar width of 1204 px for the 30
applications (using the default system font), ranging from 722
px to 1736 px. This raises interesting issues for deployment
– ExposeHKM can be readily adapted to Mac OS X menus
because they extend across the width of the primary screen;
however, it would be more difficult to deploy in small windows
where the menubar resides within the window. We return to
issues of deployment in the discussion.

Although ExposeHKM is intended to promote hotkey use, it is
compatible with pointer-based interaction and users can select
items using the pointer if preferred. Doing so should be more
efficient than traditional menus because it removes the require-
ment to first point to a menu to post it (pressing the modifier
key posts all menus at once), thus replacing two pointing ac-
tions with a single one. Although this design risks giving an
initial impression of visual clutter, studies suggest that similar
methods of parallel presentation can improve pointer-based
selection performance [30] and reduce visual search times
because rapid eye saccades can replace comparatively slow
pointer-based manipulation [14, 27]. Finally, users can still
browse the menus and select the items using the pointer only
as with a regular menubar if preferred.

Experimental method
Study 2 examined hotkey use with ExposeHKM in compari-
son to traditional menus supplemented with audio feedback
(preference results are deferred until after Study 3). Audio
feedback was used because it succeeded in promoting hotkey
use in [12] and in Study 1. The method was based on Study 1
(in turn based on [12]), with modifications described below.

Task and stimulus. Tasks involved selecting a menu item in
response to an iconic target stimulus (e.g., a hat icon for the
target ‘Hat’). Iconic stimuli were used instead of text because
pilot studies suggested that long and short word stimuli were
easier to visually identify in the menu; iconic stimuli removed
this confound: Figure 6 shows a menu and stimulus used in the
study. The mechanism for presenting stimuli and completing
selections was otherwise identical to Study 1.

Figure 6. Example menu and stimulus used in Study 2.

Procedure. All participants completed the tasks using
ExposeHKM and audio feedback. When using ExposeHKM,
all the menus concurrently appeared when the Control key
was pressed (Fig. 6). With both interfaces selections could
be completed by pointing or by using a hotkey. In the audio
feedback condition voice-synthesis read the hotkey binding
(e.g., ‘Control-D’) whenever a selection was made using the
pointer. The hotkeys associated with target items all consisted
of a single letter plus the Control key. The menus were pop-
ulated using Grossman et al.’s dataset, consisting of 6 menu
categories, each containing 12 items (Fig. 6).

Participants received brief training prior to using each inter-
face, which involved selecting an item 4 or more times using
the pointer and hotkey (data discarded). They then completed
six blocks of trials, with each block consisting of 24 selections,
using the same distribution as Study 1.

Design, Participants and Apparatus. The experiment was
designed as a 2×6×4 repeated-measures design for within-
subjects factors technique (levels ExposeHKM and audio),
block and frequency (as for Study 1). Order of Technique
was counterbalanced. The target sets used in the menus were
also counterbalanced. All participants from Study 1 proceeded
immediately to Study 2 using the same apparatus.

We inspected the data for evidence of asymmetric skill transfer,
and proceeded with within-subjects ANOVA having found

0
0

020
20

2040
40

4060
60

6080
80

80100
10

0
100% of hotkey use

%
 o

f h
ot

ke
y

us
e

% of hotkey use1

1

12

2

23

3

34

4

45

5

56

6

6Block

Block

BlockExposeHKm

ExposeHKm

ExposeHKmAudio

Audio

Audio 0

0

020

20

2040

40

4060

60

6080

80

80100

10
0

100% of hotkey use

%
 o

f h
ot

ke
y

us
e

% of hotkey use1

1

12

2

24

4

48

8

8Target frequency

Target frequency

Target frequencyExposeHKm

ExposeHKm

ExposeHKmAudio

Audio

Audio 0

0

01

1

12

2

23

3

34

4

45

5

56

6

6Mean selection time (s)

M
ea

n
se

le
ct

io
n

tim
e

(s
)

Mean selection time (s)1

1

12

2

23

3

34

4

45

5

56

6

6Block

Block

BlockExposeHKm

ExposeHKm

ExposeHKmAudio

Audio

Audio

Figure 7. Results of Study 2. Left: % hotkey use by block; Center: % hotkey use by frequency; Right: mean time by block.

none (between-subjects analysis does not substantively change
the results of significance tests).

Results
Proportion of hotkey use. There were strong main effects
for technique (F1,35 = 45.2, p < .001, η2 = .56), frequency
(p < .001, η2 = .51), and block (p < .001, η2 = .64), as
shown in Figure 7 (left and center). With ExposeHKM, 99%
of selections were completed using hotkeys, ranging from
93% in block 1 to 100% in block 6, compared with 64%
with audio, ranging from 37% in block 1 to 77% in block 6.
The continuous high hotkey use with ExposeHKM, compared
to the gradual increase with audio caused a significant tech-
nique×block interaction (F5,95 = 20.3, p < .001, η2 = .46).
There was also a significant technique×frequency interaction
(F3,105 = 32.6, p < .001, η2 = .48) caused by ExposeHKM’s
consistently high hotkey use across frequencies, but only 42%
hotkey use for infrequent targets with audio.

Item selection time and errors. Figure 7 (right) shows the mean
selection time (errors removed) with the different techniques
across block (including both pointer-based and hotkey-based
selections). Mean selection times with ExposeHKM (2.78s σ
1.8) were faster than audio (3.16s σ 2.02): F1,35 = 15.06, p <
.001, η2 = .30. As anticipated there were significant main
effects of block, and frequency (p < .001), but technique did
not interact with either.

Error rates were marginally lower with ExposeHKM (2.4%)
than audio (3.0%): F1,35 = 3.32, p = .08.

Regardless of technique, the mean hotkey selection time was
2.53s, which was less than half that of pointer selections (5.9s).
Hotkey error rates (2.4%) were also lower than pointer selec-
tions (5.9%), which we attribute to the narrow height of menu
items causing relatively frequent ‘off by one’ errors.

In summary, the results provide similar validation to that of
Study 1. With ExposeHKM, participants chose to use hotkeys
for nearly all commands almost immediately. In contrast, with
audio feedback the transition to hotkeys was more gradual:
hotkey use reached a lower maximum level, and hotkeys were
comparatively rarely used with infrequent items.

STUDY 3: RIBBONS (EXPOSEHKR)
Microsoft’s Office 2007 ‘fluent’ user interface merges toolbar
and menu designs, using a tabbed ‘ribbon’ to separate multiple

toolbars. Adapting EHK to the ribbon is challenging because
each of several tabs places different items in the same spatial
location. Also, the ribbon supports an Alt-key method for
navigating its ribbon that is superficially similar to EHK. This
raises two questions: can EHK be adapted to the ribbon, and
does it improve performance over the Alt-key technique?

The ribbon adaptation, called ExposeHKR, is visually simi-
lar to ExposeHKT, but it additionally allows users to move
between tabbed toolbars using the scrollwheel (as does the
current Microsoft Ribbon interface) or arrowkeys. To remain
consistent with the Ribbon’s tabbed subsets, ExposeHKR re-
laxes goal 1, which motivated the concurrent presentation of
all items with toolbars and menus.

There are two key differences between Microsoft’s Alt-key
interface and ExposeHKR, both arising with respect to goal 4
(stable commands in a flat hierarchy). First, every selection
with Alt-keys is necessarily hierarchical, involving a hotkey
specification of the target tab and then the target item within
the tab. Multi-level selections are necessary even when the cor-
rect target tab is pre-selected. With ExposeHKR, in contrast,
hotkeys are globally available in a flat hierarchy. Furthermore,
selecting a hotkey with ExposeHKR has the side effect of
switching to the tab that contains the target item, which is
intended to assist with browsing hotkeys when users make a
series of selections within the same tab. Second, Alt-keys are
unstable, with the same letter representing different meanings
in different modes (e.g., in Microsoft Word ‘H’ is used for
Home, Shading, Header, and more), whereas ExposeHKR’s
commands are stable and mode-insensitive. These design dif-
ferences have implications for the designer’s choice of hotkey
bindings, as discussed later.

Experimental method
Studies 1 and 2 focused on the proportion of hotkey use re-
sulting from techniques that aim to promote them. In Study 3,
the primary concern is the ultimate objective of hotkey interac-
tion – improved performance – compared across three ribbon
methods: ExposeHKR, mouse selection, and Alt-keys.

Task and stimulus. Each task involved selecting an item within
a ribbon-like interface (Figure 8) in response to a text stim-
ulus representing the target. The mechanism for presenting
stimuli and handling errors was otherwise identical to Study
2. The key-bindings used with Alt-keys all used Alt, then a

Figure 8. Example of a ribbon used in our experiment, with the ExposeHKR mode on.

single keypress for each of two levels (tab, then item). The
key-bindings for ExposeHKR all used Control then a single
keypress.

Procedure. All participants completed the tasks using
ExposeHKR, Alt Keys and pointer (mouse selection). With
each condition they were required to complete selections us-
ing the primary interaction modality in order to get them to a
performance maximum with that modality. Therefore, with
ExposeHKR and Alt Keys they were required to use hotkeys
and with pointer hotkeys were disabled. Before using each
technique, participants received brief instruction and then com-
pleted eight random selections from a ribbon populated with a
training set of items (data discarded). They were instructed to
select targets as quickly and accurately as possible.

The ribbon used in the experiment consisted of 7 tabs with 18
items each. Participants completed 8 blocks of 12 selections
with each interface. Each block comprised 2 selections of
the same 6 targets, allowing participants to gain expertise
across blocks. Half of the selections in each block involved
switching to a different tab, allowing us to inspect the impact
on performance of tab-switching with the different interfaces.

Design, Participants and Apparatus. Selection time data
was analysed using a 3×8×2 analysis of variance for within-
subject factors technique (ExposeHKR, Alt Keys and pointer),
block (levels 1-8), and tab switch (yes or no). Order of tech-
nique and the dataset used with each technique were coun-
terbalanced across participants. 18 volunteers (aged 21-45, 1
female) participated. Experimental software, written in C#,
ran on Windows 7 with a 1280×1024 22" display, optical
mouse, and QWERTY keyboard.

Results
Figure 9 summarises the selection time results for the three
techniques across block (left) and tab switch (right). Anal-
ysis of variance showed significant main effects for all fac-
tors: technique (F2,34 = 34.5, p < .001, η2 = .67), block
(F7,119 = 111.2, p < .001, η2 = .87), and tab switch
(F1,17 = 282.5, p < .001, η2 = .94).

The overall mean selection time with ExposeHKR (2.86 s,
σ 1.6) was 8.6% faster than pointer selections (3.13 s, σ
0.97), and 36% faster than Alt Keys. However, Figure 9
(left) shows a significant technique×block interaction, with
ExposeHKR slightly slower than pointer in the first two blocks,
but substantially faster (30%) than pointer by the final block
(posthoc Bonferroni, p < .05). Pairwise comparison of perfor-
mance in the final block shows significant differences between
all three interfaces. The early asymptote of the pointer perfor-
mance curve suggests that pointer selection rapidly reaches a
relatively low performance ceiling.

Figure 9 (right) shows the significant technique×tab switch in-
teraction (F2,34 = 10.6, p < .001, η2 = .67), which is best at-
tributed to the contrast between the pointer and ExposeHKR be-
ing similarly affected by the need to switch tabs, while perfor-
mance with Alt Keys was more consistent across the tab switch
levels. This is explained by the Alt Key mechanism requiring
users to carry out identical hierarchical actions regardless tab
switch state, whereas pointer and ExposeHKR actions are
different depending on the need to switch tabs (they need to
carry out additional actions to click on the item or to view
the hotkey). With experience, however, once hotkeys are well
learned, ExposeHKR users do not need to switch tabs, which
best explains the three-way significant technique×block×tab
switch interaction (F14,238 = 2.81, p < .001, η2 = .14).
0

0

02

2

24

4

46

6

68

8

8Mean selection time (s)
M

ea
n

se
le

ct
io

n
tim

e
(s

)
Mean selection time (s)1

1

12

2

23

3

34

4

45

5

56

6

67

7

78

8

8Block

Block

BlockPointer

Pointer

PointerEHKr

EHKr

EHKrAlt key

Alt key

Alt key 0

0

01

1

12

2

23

3

34

4

45

5

5No switch

No switch

No switchSwitch

Switch

SwitchPointer

Pointer

PointerEHKr

EHKr

EHKrAlt key

Alt key

Alt key

Figure 9. Mean selection time (s) per block (left) and condition (right)

SUBJECTIVE RESULTS (ALL STUDIES)
After each study participants completed NASA-TLX work-
sheets to assess subjective workload with each interface, they
ranked the interfaces for overall preference, and they provided
comments. In all cases, the participants’ subjective responses
strongly favoured EHK – 66.7% ranked it first for overall pref-
erence in Study 1, 77.8% preferred it over audio in Study 2,
and 88.9% ranked it first in Study 3. Mean responses are
shown in Table 1, with significant differences shown in bold
(Friedman and Wilcoxon tests).

In studies 1 and 2, NASA-TLX measures showed that
EHK had the lowest or equal-to-lowest workload measure
in all categories. Several participants also commented that the
audio feedback method was “annoying”, and that they inten-
tionally decided ignore its feedback. In study 3, EHK was
assessed as resulting in lower physical demand, less frustra-
tion, and higher perceived success than pointing, but it had
higher mental demand. We suspect that the low mental de-
mand of pointing is a key factor in users failing to migrate to
hotkeys, but we also suspect that once practiced, hotkeys re-
quire similar mental demand to pointing (e.g., using Control-C

for copy no longer requires much thought for most users). We
return to this issue in the discussion.

Study 1 Study 2 Study 3
eHK T A eHK A eHK Alt P

Mental demand 2.7 3.2 3.4 2.6 2.9 2.9 4.0 1.9
Physical demand 2.4 3.0 2.7 2.1 2.7 1.8 2.5 3.1
Temporal demand 2.6 2.7 2.6 2.5 2.7 2.3 3.0 2.1
Hard work 2.6 3.2 3.1 2.4 3.0 2.9 3.8 2.9
Frustration 2.1 2.6 3.0 2.0 2.7 1.9 3.2 2.7
Successful 3.8 3.4 3.5 4.0 3.7 4.2 3.0 3.2

Table 1. Mean NASA-TLX and other values (1=low, 5=high) per exper-
iment (Toolbars, Menus or Ribbon) and techniques (eHK: ExposeHK;
T: Tooltips; A: Audio; Alt: Alt keys; P: Pointer). Significant effects for
ExposeHK in bold.

DISCUSSION
Design goals 1-3 address issues in promoting users’ transi-
tion to using hotkeys: helping novices browse hotkeys (goal
1), using physical rehearsal (goal 2), and drawing on spatial
memory to assist hotkey identification and confirmation for
intermediate users (goal 3).

Studies 1 and 2 showed that toolbar and menu adaptations
of EHK improved on the state-of-the-art systems for promot-
ing hotkey use. Participants made an early, comprehensive,
and sustained switch to hotkeys when using EHK, whereas
standard tooltips and post-selection audio feedback resulted in
slower hotkey adoption and lower levels of use. Participants,
mostly university staff and students, were almost certainly
aware of keyboard shortcuts as an interface mechanism, pos-
sibly increasing hotkey use for all conditions. Finally, partic-
ipants also strongly preferred EHK to the other conditions
tested (audio feedback and contemporary designs).

Design goal 4 addresses ultimate performance with hotkeys by
advocating stable bindings that are globally applicable in a flat
interface hierarchy. Study 3 therefore examined user perfor-
mance with EHK when adapted to a contemporary ‘ribbon’ de-
sign of tabbed toolbars, comparing performance with standard
pointer-based selection and with a commercial hierarchical
‘Alt’ Keys interface. Results showed that EHK quickly outper-
formed the pointer by up to 30% on selection time. EHK sub-
stantially outperformed the Alt keys interface throughout.

Together the studies suggest that user performance in com-
mand selection can be improved by incorporating EHK in stan-
dard toolbar, menu, and ribbon interfaces. With EHK novice
users have a mechanism to browse hotkeys without using the
pointer, and they can issue hotkey commands as a rehearsal of
the expert mechanism. Intermediate users can draw on their
spatial knowledge of commands to rapidly find hotkey bind-
ings. Finally, the ultimate performance of experts is improved
through stable bindings and flat hierarchies.

The following subsections discuss issues of deployment and
identify promising areas for further work.

Discoverability and pointer compulsion
The studies show that when participants are aware of EHK they
use it to their advantage and are enthusiastic about it. However,
all three studies included explicit instruction and practice with
EHK prior to experimental tasks, which raises questions of
how it will be discovered and used in practice. We see two

challenges for practical deployments, related to its discover-
ability and to the need to break users’ inertia in continuing
with pointer-based selections (or pointer compulsion).

Discoverability. Interactions such as EHK have no visual rep-
resentation to aid their discovery until the user accidentally or
deliberately presses its modifier-key trigger. Similar problems
of weak affordances are present in many forms of interaction,
such as touchscreens, where the number of taps, the number
of fingers, the tap location, or press duration can be used to
control different interactive effects, without any visual repre-
sentation. In such cases designers often use techniques such as
on- and off-line tutorials, ‘tip of the day’ utilities, and general
marketing to promote discovery and awareness.

Social interactions around computing (e.g., over-the-shoulder
observation) also play a major role is disseminating useful
system capabilities [25]. Consequently, useful facilities can
become widely known even when their presentation is subtle
or relatively cryptic.

Pointer compulsion. Studies 1 and 2 explicitly instructed
users to make a series of pointer-based and hotkey-based se-
lections with each interface prior to beginning experimental
tasks. However, in pilot studies, some participants completed
selections using the pointer despite clearly displayed instruc-
tions to use hotkeys, and they continued to do so until verbally
instructed to use the hotkeys. Breaking this inertia of pointer-
based interaction is challenging, but doing so is a primary
objective of goals 1-3.

Regardless of these challenges to adoption, it is important
to note that EHK is largely compatible with existing designs
– it supplements their functionality without changing their
basic behavior, allowing users to maintain existing interaction
strategies without performance detriment, but also offering a
higher performance ceiling if used.

In on-going work we are developing an application that will
incorporate ExposeHKM into Mac OS X menus. This will
allow us to gain insights into longitudinal use of EHK in real-
world deployments.

Modifier keys and vocabulary
The hotkeys in our experiments used only the Control key as
a modifier. However, some applications use multiple modi-
fiers and modifier combinations to increase hotkey vocabulary
(e.g. Control, Alt, and Control+Alt). Although we have not
yet evaluated multiple modifiers, we suspect that the results
will generalise to modifier key combinations. Importantly,
design guidelines advocate using single modifier keys (like
those evaluated) for important commands: for example, Apple
recommends that developers “use the Command key as the
main modifier key in a keyboard shortcut” [21]. Furthermore,
our analysis of how hotkeys are used in 30 mainstream appli-
cations showed that 93.4% (sd 12.7%) of commands use the
Command key, suggesting that our method is representative
of contemporary hotkey deployments.

When multiple modifiers are required, EHK could be further
adapted to help users learn the modifier key bindings. For
example, the display mechanism for exposing hotkeys could

highlight the items accessed with the currently depressed mod-
ifier key (e.g., using a different color or opacity), while also
showing all other hotkey bindings to assist users who are
unsure of the required modifier for their target.

By advocating for stable hotkey bindings in a globally acces-
sible flat hierarchy, goal 4 limits the number of commands
accessible through a single hotkey character with each single
modifier key to ≈ 45 (alphanumerical plus special characters).
In contrast, a two-level Alt hierarchy that uses a single char-
acter at each level gives access to up to t×45 (plus numbers
and special characters) commands (where t is the number of
top-level tabs). Pragmatically, though, we suspect that very
few users know as many as 45 hotkeys in any existing system.

Adaptation to other interfaces
Several design solutions could be used to adapt EHK to menu
and toolbar combinations. Most toolbar items are replicated in
menus, so the simplest solution would be to allow the menus to
occlude the toolbar. However, this would impair intermediate
users’ ability to use their spatial memory of items in the toolbar
(opposing goal 3). Alternatively, different modifier keys, or
different actions on the same modifier key, could be used
to trigger toolbar and menu hotkey exposure: for example,
a single Control key press might show ExposeHKT, and a
second one ExposeHKM.

By displaying all of the available menu commands at once,
ExposeHKM effectively turns the command-access interface
into a CommandMap [30]. Scarr et al. demonstrated that
pointer-based interaction with CommandMaps substantially
outperforms ribbon and menu designs because it replaces
two actions (each involving search, decision, and pointing)
with a single one. Consequently, even when items within
ExposeHKM have no associated hotkey, ExposeHKM should
improve performance over traditional schemes.

CONCLUSION
Keyboard shortcuts such as hotkeys are widely deployed in
current applications but they are known to be underused. We
presented ExposeHK, a simple interactive technique that over-
lays hotkeys onto existing widgets when a modifier key is
pressed. Its design promotes hotkey use and enhances effi-
ciency through four goals: enable hotkey browsing; support
physical rehearsal; support rapid hotkey identification; and
support stable commands in a flat hierarchy. We presented
three ExposeHK exemplars that work with the main methods
for organising commands in graphical user interfaces: tool-
bars, menus, and tabbed ‘ribbon’ toolbars. Three studies, one
with each of the designs, demonstrated that the adaptations
succeed in promoting earlier and higher levels of hotkey use
than other methods, that they improve user performance, and
that they are subjectively preferred to alternatives.

REFERENCES
1. Alexander, J. Understanding and Improving Navigation Within

Electronic Documents. PhD thesis, University of Canterbury,
Christchurch, New-Zealand, 2009.

2. Appert, C., and Zhai, S. Using strokes as command shortcuts: cognitive
benefits and toolkit support. CHI ’09, ACM, 2289–2298.

3. Bailly, G., Lecolinet, E., and Nigay, L. Flower menus: a new type of
marking menu with large menu breadth, within groups and efficient
expert mode memorization. AVI ’08, ACM, 15–22.

4. Bau, O., and Mackay, W. Octopocus: a dynamic guide for learning
gesture-based command sets. UIST ’08, ACM, 37–46.

5. Bhavnani, S. K., and John, B. E. The strategic use of complex computer
systems. Hum.-Comput. Interact. 15, 2 (Sept. 2000), 107–137.

6. Callahan, J., Hopkins, D., Weiser, M., and Shneiderman, B. An empirical
comparison of pie vs. linear menus. CHI ’88, ACM, 95–100.

7. Card, S., Moran, T., and Newell, A. The keystroke-level model for user
performance time with interactive systems. Commun. ACM 23 (July
1980), 396–410.

8. Card, S., Newell, A., and Moran, T. The Psychology of
Human-Computer Interaction. L. Erlbaum Associates Inc., 1983.

9. Carroll, J. M., and Rosson, M. B. Paradox of the active user. MIT Press,
Cambridge, MA, USA, 1987, 80–111.

10. Cockburn, A., and Gutwin, C. A predictive model of human performance
with scrolling and hierarchical lists. HumanComputer Interaction 24, 3
(2009), 273–314.

11. Common commands in speech recognition.
http://windows.microsoft.com/en-NZ/windows-vista/
Common-commands-in-Speech-Recognition.

12. Grossman, T., Dragicevic, P., and Balakrishnan, R. Strategies for
accelerating on-line learning of hotkeys. CHI ’07, ACM, 1591–1600.

13. Hart, S., and Staveland, L. Development of nasa-tlx (task load index):
Results of empirical and theoretical research. Human mental workload,
Elsevier, 139–183.

14. Hornof, A. Visual search and mouse-pointing in labeled versus unlabeled
two-dimensional visual hierarchies. ACM Trans. Comput.-Hum. Interact.
8, 3 (Sept. 2001), 171–197.

15. Howes, A., Payne, S. J., and Woodward, A. The trouble with shortcuts.
CHI ’00 Extended Abstracts, CHI EA ’00, ACM, 267–268.

16. Jorgensen, A., Garde, A., Laursen, B., and Jensen, B. Using mouse and
keyboard under time pressure: Preference, strategies and learning.
Behaviour & Information Technology 21, 5 (2002), 317–319.

17. Krisler, B., and Alterman, R. Training towards mastery: overcoming the
active user paradox. NordiCHI ’08, ACM, 239–248.

18. Kurtenbach, G., and Buxton, W. Issues in combining marking and direct
manipulation techniques. UIST ’91, ACM, 137–144.

19. Kurtenbach, G. P. The design and evaluation of marking menus. PhD
thesis, University of Toronto, Ontario, Canada, 1993.

20. Lane, D., Napier, A., Peres, C., and Sandor, A. The Hidden Costs of
Graphical User Interfaces: The Failure to Make the Transition from
Menus and Icon Tool Bars to Keyboard Shortcuts. International Journal
of Human-Computer Interaction 18 (2005), 133–144.

21. Mac os x human interfaces guidelines.
https://developer.apple.com/library/mac/#documentation/
UserExperience/Conceptual/AppleHIGuidelines/Intro/Intro.html.

22. Matejka, J., Li, W., Grossman, T., and Fitzmaurice, G.
Communitycommands: command recommendations for software
applications. UIST ’09, ACM, 193–202.

23. Miller, C. S., Denkov, S., and Omanson, R. C. Categorization costs for
hierarchical keyboard commands. CHI ’11, ACM, 2765–2768.

24. Odell, D., Davis, R., Smith, A., and Wright, P. Toolglasses, marking
menus, and hotkeys: a comparison of one and two-handed command
selection techniques. GI ’04, 17–24.

25. Peres, C., Tamborello, F., Fleetwood, M., Chung, P., and Paige-smith, D.
Keyboard shortcut usage: The roles of social factors and computer
experience. HFES ’04, 803–807.

26. Poulton, E., and Freeman, P. Unwanted asymmetrical transfer effects
with balanced experimental designs. Psychological Bulletin 66, 1 (1966).

27. Quinn, P., and Cockburn, A. The effects of menu parallelism on visual
search and selection. AUIC ’08, Australian Computer Society, 79–84.

28. Rekimoto, J., Ishizawa, T., Schwesig, C., and Oba, H. Presense:
interaction techniques for finger sensing input devices. UIST ’03, ACM,
203–212.

29. Richardson, J. T. Eta squared and partial eta squared as measures of
effect size in educational research. Educational Research Review 6, 2
(2011), 135–147.

30. Scarr, J., Cockburn, A., Gutwin, C., and Bunt, A. Improving command
selection with commandmaps. CHI ’12, ACM, 257–266.

31. Scarr, J., Cockburn, A., Gutwin, C., and Quinn, P. Dips and ceilings:
understanding and supporting transitions to expertise in user interfaces.
CHI’ 11, ACM, 2741–2750.

32. Schmidt, R. A., and Lee, T. D. Motor control and learning: A behavioral
emphasis, vol. 3. Human Kinetics, 2005.

33. Schneider, W., and Chein, J. Controlled & automatic processing:
behavior, theory, and biological mechanisms. Cognitive Science 27, 3
(2003), 525–559.

http://windows.microsoft.com/en-NZ/windows-vista/Common-commands-in-Speech-Recognition
http://windows.microsoft.com/en-NZ/windows-vista/Common-commands-in-Speech-Recognition
https://developer.apple.com/library/mac/#documentation/UserExperience/Conceptual/AppleHIGuidelines/Intro/Intro.html
https://developer.apple.com/library/mac/#documentation/UserExperience/Conceptual/AppleHIGuidelines/Intro/Intro.html

	INTRODUCTION
	EXPOSEHK: DESIGN GOALS AND RELATED WORK
	Design Goals
	Goal 1: Enable hotkey browsing
	Goal 2: Support physical rehearsal
	Goal 3: Rapid hotkey identification for intermediate users
	Goal 4: Stable commands in a flat hierarchy

	Other related work

	User studies rationale
	STUDY 1: TOOLBARS (EXPOSEHKT)
	Experimental method
	Results

	STUDY 2: MENUS (EXPOSEHKM)
	Characterising menu hotkeys
	Adapting ExposeHK to menus
	Experimental method
	Results

	STUDY 3: RIBBONS (EXPOSEHKR)
	Experimental method
	Results

	Subjective Results (All Studies)
	Discussion
	Discoverability and pointer compulsion
	Modifier keys and vocabulary
	Adaptation to other interfaces

	CONCLUSION
	REFERENCES

