
UNCORRECTED P
ROOF

Supporting tailorable program visualisation through literate programming
and ®sheye views

Andy Cockburn*

Department of Computer Science, University of Canterbury, Christchurch, New Zealand

Received 11 April 2000; revised 23 July 2001; accepted 14 August 2001

Abstract

This paper describes the `Jaba' program editor and browser that allows users to tailor the level of abstraction at which they visualise,

browse, edit and document object-oriented programs. Its design draws on concepts from literate programming, holophrasting displays,

®sheye visualisation and hypertext to allow programmers to rapidly move between abstract and detailed views of Java classes. The paper

focuses on the motivation for, and user interface issues surrounding, the integration of these facilities in Jaba. Limitations in the current tools

and theories for programming support are identi®ed, and modi®cations are proposed and demonstrated. Examples include overcoming the

static post-hoc documentation support provided by Javadoc, and normalising Furnas's `degree of interest' ®sheye visualisation formula to

avoid excessive suppression of program segments. q 2001 Elsevier Science B.V. All rights reserved.

Keywords: Literate programming; Documentation; Fisheye visualisation; Hypertext; Programming environments; Java

1. Introduction

Computer programming is a demanding activity.

Programmers work within complex information spaces at

many different levels of abstraction. For example, modify-

ing the internal structure of a method requires a detailed

view of its contents, but invoking a method needs only an

abstract view of its method signature to determine the

number, type and order of parameters. Fig. 1 shows the

problem in an object-oriented program. It shows a program

line inside class X, and the possible points of reference that

the programmer may wish to view in association with the

line. The ®gure also shows the limited display extent of a

`typical' editor window into class X. To ease these problems

modern programming environments include powerful

searching and marking capabilities, and many support

context-sensitive editing features such as pop-up menus

that let the programmer select available methods from

object reference variables. Despite these enhancements,

each editor window is essentially a `¯at' representation of

program text that displays the programmer's focal point of

interest and whatever neighbouring text ®ts into the window

extent; scrolling, searching and marking must be used to

move between related program segments that lie outside

the display extent of the window.

This paper describes `Jaba', a hypertext system that

supports programmers in visualising, browsing, editing

and documenting object-oriented programs. By integrating

concepts from `literate programming' [15,14], `holophrast-

ing displays' [25], `®sheye views' [8], and hypertext [6],

Jaba allows programmers to tailor the level of program

detail displayed across an arbitrary number of program

regions. It automatically divides the program into `chunks'

that encapsulate syntactic program units, and users can add

further chunks to capture the cognitive units that they

perceive in their programs. Literate programming techni-

ques support a strong connection between program code

and its associated documentation. Holophrasting schemes

allow the user to show or hide program regions, and ®sheye

views are used to tailor the level of detail shown at, and

around, the user's focal point in the program. The aim is to

enhance the user's ability to focus on, and navigate through,

the salient program details without the distraction of

display-space clutter from super¯uous information.

The structure of the paper is as follows. Section 2

provides background reviews of literate programming, holo-

phrasting interfaces and ®sheye views. The javadoc system,

which produces HTML documentation from Java classes is

included in the review to motivate enhancements in systems

such as Jaba. Readers who are familiar with these techni-

ques may wish to move directly to Section 3 which

describes the Jaba system. Section 4 provides the rationale

behind the major design decisions, and Section 5 critically

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

Information and Software Technology 00 (2001) 000±000

INFSOF4201

0950-5849/01/$ - see front matter q 2001 Elsevier Science B.V. All rights reserved.

PII: S0950-5849(01)00182-3

www.elsevier.com/locate/infsof

* Tel.: 164-3-364-2987/7768; fax: 164-3-364-2569.

E-mail address: andy@cosc.canterbury.ac.nz (A. Cockburn).

ARTICLE IN PRESS

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 05-09-2001 12:46 article rw Alden



UNCORRECTED P
ROOF

assesses Jaba's capabilities and discusses further work.

Interactive programming environments that demonstrate

related capabilities to those of Jaba are presented in Section

6. Section 7 summarises and concludes the paper.

2. Background: programming and levels of detail

2.1. Literate programming

Literate programming [14,15] is an elegant technique that

allows programmers to design, document, and construct

their programs in whatever order best aids human under-

standing. Using a literate programming tool, users can

arrange programming elements and their accompanying

documentation in whatever order they choose, rather than

having the order of exposition dictated by the requirements

of the language's compiler or interpreter. The resultant

literate program consists of `chunks' of code and documen-

tation in which the chunks represent cognitive units in the

program. These cognitive chunks need not correspond to the

programming language's syntactic constructs. For example,

a cognitive chunk for a looping construct may contain a set

of variable assignments that establish pre- and post-condi-

tions in addition to the syntactic elements of the loop.

De®ned chunks can be used by zero or more other chunks.

Literate programs can be `tangled' to produce code that is

ready for processing by a compiler or interpreter, or they can

be `woven' to produce documentation that includes exten-

sive cross-referencing and indexing of program elements.

Literate techniques allow programmers to describe their

programs clearly and precisely, with their documentation

integrated into the program, in a manner that is impossible

with standard CASE tools. Fig. 2 shows the mark-up of a

java class `QuickDemo' that implements the quick sort

algorithm using the literate programming tool noweb [21].

Chunk de®nitions are denoted by the construct ! Chunk

Name @ � , and chunk uses by ! Chunk Name @ . The

`root' chunk is identi®ed by the chunk-name p . The root

chunk in Fig. 2 `uses' four chunks (`Import Packages',

`Static variable declarations', `The QuickSort method' and

`The main program'), which are each de®ned later in the

literate program. Chunks may be de®ned in any order.

Documentation chunks begin with the @ symbol.

The text-based mark-up of literate programs adds a layer of

syntax on-top of the programming language syntax. Mistakes

in the speci®cation of the chunking structure cause syntax

errors when the literate program is `tangled' or `woven'. For

this reason Knuth did not advocate the use of literate program-

ming for students or hobbyists. Graphical user interfaces,

however, can overcome these problems by providing `syntac-

tic correctness' [24] Ð when the user requests modi®cation to

the chunking structure, the program can assure that the correct

syntactic modi®cations are made to the underlying program.

Such a graphical user interface to literate programming for

novice programmers is described in [5].

2.2. Holophrasting program displays

Holophrasting interfaces [3,25] aim to improve visualisa-

tion of textual information spaces by providing contextual

overviews that allow users to suppress or `elide' the display

of regions of text.

Holophrasting systems extract structural information

A. Cockburn / Information and Software Technology 00 (2001) 000±0002

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

Fig. 1. Interconnections arising from one program line. Window display space over laid in class X.

ARTICLE IN PRESS

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 05-09-2001 12:46 article rw Alden



UNCORRECTED P
ROOF

from the document source. Document markup tags such as

section and subsection headings can be used to determine

structure. A variety of schemes has been proposed for

extracting structure from computer programs. These include

using the grammatical rules of derivation for the language,

and the use of program blocks such as the sequence of

statements between opening and closing braces in C. Holo-

phrasting systems are reviewed in Section 6.

The document regions to be suppressed may be under

direct user control, or may be automatically con®gured as

the user moves their cursor through the document. A variety

of interface mechanisms can be used to reveal that text has

been suppressed-the most common is to display an ellipsis

(`¼'). Fig. 3 shows 20 lines of the QuickDemo class in a

normal view (unholophrasted) and in a holophrasted view

which uses ellipsis to represent suppressed text: line

numbers are shown on the left of the program text. Note

that the holophrasted display reveals the entire extent of the

class (®rst line to the last line).

2.3. Fisheye visualisations

Furnas [8] introduced ®sheye views as a way of allowing

users to simultaneously view the details of their focal point

of interest in an information space while also displaying the

surrounding contextual information. Fisheye views have

become a popular research topic and many systems have

extended the research, particularly in graphical information

spaces [17,18]. When applied to text, ®sheye views are a

powerful holophrasting technique in which the display

contents are automatically adapted in an attempt to match

the user's interest in regions in the document.

A simple `degree of interest' (DOI) formula is used to

calculate the user's `interest' in all of the data-points in the

information space (Eq. (1)). The two factors used in this

calculation are the user's a priori interest in the data, and

the distance that the data lies from the user's current focal

point.

DOIfisheye�xu: � y� � API�x�2 Distance�x; y� �1�

DOIfisheye�xu: � y� returns the user's interest in the infor-

mation at point x, given that their current focus of attention

is directed at point y. API(x) returns the user's a priori

interest in data point x Ð it is a measure of the semantic

importance of the information. In a map, for instance, it is

reasonable to expect that cities would have a higher a priori

interest than towns. In computer programs, API values

decrease with the nesting depth of program elements.

Distance(x, y) is a measure of the distance between points

x and y Ð in hierarchical data structures such as computer

programs, distance may be measured in terms of path

distance between nodes, rather than as an absolute measure.

If the calculated DOI measure for data-point x falls below

a threshold k, then the information at that point is suppressed

or `elided' (not displayed). In our experience, it is necessary

to normalise the values returned by the DOI formula: this

issue is further discussed in Section 3.5.

Furnas describes several example systems, including a

visualisation mechanism for C programs. In this system,

program details around the user's focus of interest are

displayed in full, while only the `landmark' program

segments are displayed further from the user's location,

producing program views similar to the holophrasted view

shown in Fig. 3. Ellipses and non-contiguous line-numbers

are used to indicate that lines in the text have been

suppressed. Furnas provides preliminary empirical evidence

that ®sheye techniques can assist in searching hierarchical

information.

Recent work on ®sheye visualisations has greatly

extended the original work, particularly in graphical

displays of networks (for example, Refs. [23,16]). Fisheye

visualisation techniques now offer many capabilities that

A. Cockburn / Information and Software Technology 00 (2001) 000±000 3

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

Fig. 2. Literate mark-up of a segment of the QuickDemo class using noweb

[21].

Fig. 3. Twenty lines of the QuickDemo class in normal and holophrasted

views.

ARTICLE IN PRESS

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 05-09-2001 12:46 article rw Alden



UNCORRECTED P
ROOF

could be used to enhance the C program visualisation

system originally proposed by Furnas. Multiple focal points

[22] would allow programmers to selectively reveal the

details of several points within program ®les, such as an

editing point and a secondary reference point. Another

possibility is to enrich the display mechanisms used to

denote suppressed lines of text. Techniques such as scalable

fonts would reveal much more information about the

suppressed information while consuming minimal amounts

of screen real-estate. Systems demonstrating text-based ®sh-

eyes are reviewed in Section 6.

One potential problem with ®sheye view techniques

arises from the DOI formula's calculation of the user's

degree of interest. The formula implements a heuristic

assessment of the user's likely degree of interest, and it

will sometimes incorrectly suppress desired information or

display information that is unnecessary for the user's task.

Thus, the formula will make it dif®cult for programmers to

explicitly select portions of the text that should be displayed

regardless of the user's movement within the program. The

equivalent of `manual overrides', or holophrasting, in the

interface could be used to ensure that regions in the program

stay displayed regardless of their calculated degree of inter-

est.

2.4. Javadoc documentation

One of the major claims of the object-oriented program-

ming paradigm is that it encourages and supports code

reuse. In Java, code comprehension and reuse is greatly

enhanced by the availability of javadoc1 [7] documentation.

The javadoc tool generates HTML documentation by

parsing the contents of class ®les, and extracting informa-

tion about methods, data-®elds and any specially formatted

comments. All of the Java API (application programmer's

interface) can be reviewed with a web-browser through

javadoc's consistent and easily comprehensible format.

Fig. 4(a) shows a the javadoc generated for the QuickDemo

class constructor and its qsort method.

Sun's Java2 javadoc produces framed HTML (Fig. 4(b)).

The frames ease navigating between high-level packages,

but the code-level documentation remains similar to version

1.1. The Continuous Zoom interface [11] used a graphical

®sheye technique to ease navigation between package level

views of the Java API and the javadoc documentation pages.

There are several opportunities for enhancing the support

javadoc offers. First, javadoc produces static documentation

that is separate from the actual code. Code modi®cations

can therefore render the documentation redundant or incor-

rect. A dynamic version of javadoc could automatically

ensure consistency between the documentation and the

program code. Second, javadoc is a post-hoc documentation

strategy that requires that the class have been developed into

a syntactically correct (and presumably complete) class

speci®cation. An extension to javadoc could offer dynami-

cally generated documentation even for partially complete

classes. Third, javadoc offers only a single level of abstrac-

tion for investigating the class: it reveals method signatures,

the names and types of class data-®elds, and any specially

formatted comments that the programmer has written at the

A. Cockburn / Information and Software Technology 00 (2001) 000±0004

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

Fig. 4. Javadoc documentation. (a) Java 1 javadoc of the QuickDemo class; (b) Java 2 framed javadoc documentation of the class java.lang.String.

1 http://java.sun.com/products/jdk/javadoc/.

ARTICLE IN PRESS

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 05-09-2001 12:47 article rw Alden



UNCORRECTED P
ROOF

top-level in the class (formatted comments inside methods

are ignored). An extension to javadoc could allow program-

mers to investigate the internal details of classes, for

instance checking the details of the algorithm contained

within a method. The Jaba system, described in Section 3,

attempts to exploit each of these opportunities.

3. Jaba: system description

Jaba is an experimental tool for editing and browsing Java

programs. Although its implementation is tightly bound to

the Java programming language, most of the interface prop-

erties demonstrated by the tool could be adapted to a wide

set of object-oriented programming languages.

3.1. Jaba overview

Fig. 5 shows a typical Jaba window, which contains two

sub-windows: a graphical tree representation of the class

structure (left), and a hypertextual text editor/viewer

(right). An HTML text-viewer for displaying javadoc docu-

mentation is also available (bottom of Fig. 6). The graphical

tree and javadoc windows can be hidden through check-

boxes under the `View' menu.

When a class is loaded into a Jaba window it is displayed

at the most abstract level (as in Fig. 5). Only top-level

chunks are shown, and none of the inner-details of those

chunks is revealed. The GuiYahtzee.java class displayed

in Fig. 5 contains over 400 program lines, but the entire

extent of the class (®rst line to last line) is shown in the

text-editor window. Semantic information about chunk-

types is displayed in the graphical tree. Jaba supports ®ve

different types of chunks (Table 1), each of which has its

own iconic representation in the graphical tree.

Users reveal successive levels of inner detail within

chunks by clicking on the plus icons in the tree representa-

tion or by clicking the hypertext links in the text viewer/

editor. When a chunk is expanded, the text it contains is

shaded grey for two seconds to help the user perceive the

extent of the newly displayed information contained in the

chunk. The hypertext links associated with contracted

chunks are coloured red and expanded links are coloured

blue (all colours are con®gurable). Chunks are contracted by

clicking on the link or by clicking the corresponding minus

icon in the tree viewer. Several interface features are

intended to assist programmers in navigating through the

program. For instance, clicking on the name of a chunk in

the graphical tree causes the text display to immediately

scroll to the associated chunk. Other interface mechanisms

that assist navigation are described in Section 3.4.

The top-half of Fig. 6 shows the system state after

expanding two levels of inner detail. First, the user clicked

the ScoringMethods link, which encapsulated two Java

methods clickScoreCell and attach-listener). This caused

abstracted representations of these methods to be displayed,

showing only their signatures. The user subsequently

clicked on the clickScoreCell hypertext link, revealing the

inner-details of that method's code.

Jaba parses classes prior to displaying them. All ®ve types

of abstractions are detected, the types of all object variables

are stored, and method invocations are detected, as are

connections with super-classes such as overriding methods

A. Cockburn / Information and Software Technology 00 (2001) 000±000 5

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

Fig. 5. Jaba's main window, showing the `main' class of the Yahtzee program.

ARTICLE IN PRESS

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 05-09-2001 12:47 article rw Alden



UNCORRECTED P
ROOFand invocations of super constructors. The text of every

method invocation has a hypertext link attached to it

(coloured green) allowing easy inspection of the associated

method details. The declaration of every object variable is

similarly linked to the associated class. When these links are

clicked, if a class ®le of the object type is available on the

user's class path,2 then the class details are displayed in a

new Jaba window. Otherwise, if javadoc documentation of

the class is available then it is displayed in the HTML

viewer at the bottom of the window and in an external

web-browser if the appropriate options are set (using the

Options menu). For example, the bottom half of Fig. 6

shows the javadoc documentation for the Button class.

This was displayed when the user clicked the Button hyper-

text link associated with the declaration of the ®rst para-

meter in the attach_listener method. When the user clicks

on method invocation links, Jaba or javadoc immediately

scroll to display the appropriate method description.

3.2. Tailoring the representation of context

Figs. 5 and 6 show no contextual information about the

contents of unexpanded chunks-all chunks in Fig. 5 are

unexpanded, and in Fig. 6 chunk attach-listener in the

text-edit window is unexpanded. This is similar to the

approach described by Furnas (Section 2.3) in which

suppressed information is completely hidden from the user.

Jaba allows users to tailor the representation of the

abstracted information by selecting one of three text-sizes

for the suppressed text (Fig. 7(a)). The `Invisible' option

completely suppresses the abstracted details (as shown in

Figs. 5 and 6). The `Tiny' option, shown in Fig. 7(b),

provides limited contextual information about the

suppressed information contained within a chunk. Although

the text is not legible, the tiny option provides indications of

the amount of suppressed information, its overall structure

(apparent from indentation and from the number of red or

blue portions which represent further abstractions), and

limited information about the contents-blocks of green, for

instance, reveal many declarations. The extreme miniatur-

isation of the `tiny' font assures that minimal screen real-

estate is dedicated to contextual information. The `Legible'

option renders suppressed text in a very small, but just legi-

ble, font. This option is a trade-off between the detailed

views provided by expanding chunks and the broad views

that are enabled by hiding and miniaturising suppressed

chunks.

A. Cockburn / Information and Software Technology 00 (2001) 000±0006

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

Table 1

Five chunk types supported by Jaba and their iconic representation

Chunk type Icon Comment

Generic abstraction User-de®ned generic

chunks. Used, for

example, to group a set

of related methods

Documentation User-de®ned

documentation chunks

Methods Jaba automatically

detects methods and

stores their contents as

chunks that can be

contracted and expanded

Constructors Constructor methods are

automatically detected

Statement blocks Jaba automatically

detects statement blocks

contained in loops and

conditionals

Fig. 6. Expanding abstractions, and inspecting object details.

2 The Java class-path determines where to search for source-code asso-

ciated with java classes.

ARTICLE IN PRESS

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 05-09-2001 12:47 article rw Alden



UNCORRECTED P
ROOF3.3. Creating chunks

Section 2.1 noted that traditional interfaces to the

mark-up of literate programs introduce a second layer

of syntax on top of the programming language. This

raises the possibility of syntax errors in the mark-up

of the literate structure.

Part of Jaba's chunking structure is automatically

extracted from the program code, without the need for any

additional mark-up-methods, inheritance, loops and condi-

tionals, for instance, are all automatically extracted, as are

the hypertext links to other classes and their methods. When

the user chooses to explicitly create new abstractions, the

new mark-up is embedded within Java comments. Although

the user can enter the mark-up for new chunking structure

by typing it directly, the normal way to do so is through

menu options.

To convert an already existing section of code or

documentation into a chunk, the user ®rst selects the

region to be chunked and then selects the `Chunk the

selection' option from the `Edit' menu. To create a new

chunk before its contents have been written, the user

selects `Add chunk' from the `Insert menu'. In either

case, a pop-up dialogue box prompts the user for a chunk

name and type. The type can be either `Abstraction'-for

generic abstractions such as a grouping of related meth-

ods-or `Documentation'. The appropriate syntactically

correct comments are then added to the text to mark-up

the new chunking structure. There are no limits to the nest-

ing depth of the chunk structure.

A. Cockburn / Information and Software Technology 00 (2001) 000±000 7

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

Fig. 7. Selecting and displaying `tiny' text for abstracted program details; (a) Selecting the `tiny' size; (b) `Tiny' text revealing the context of abstracted

chunks.

Fig. 8. Fisheye selection of suppressed regions. (a) Threshold value 21; (b) Threshold value 23.

ARTICLE IN PRESS

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 05-09-2001 12:47 article rw Alden



UNCORRECTED P
ROOF

3.4. Shortcuts for exploring abstractions

Several system capabilities are intended to assist users in

rapidly attaining the `right level' of abstraction in their

visualisation of classes. A variety of short-cuts, accessed

under the `Options' menu (Fig. 7(a)), allow users to expand

or contract speci®c chunk types within the class. Through

this menu, users can selectively contract or expand all

chunks of each semantic type (generic abstraction, docu-

mentation, methods, constructors, or statement blocks), or

they can choose to contract or expand all chunks regardless

of type. Expanding all chunks provides a standard `¯at' text-

editor with hyperlinking to the objects referred to in the

class.

The system also remembers prior levels of abstraction

within any chunk, allowing users to quickly refer back to

previously inspected program regions. For example, if the

user expands ®ve levels of detail within chunk X, they can

contract all of that detail by clicking the top-level link to X.

When the user next expands X it will automatically display

the ®ve levels of detail that it previously showed.

3.5. Automatic DOI display con®guration

Jaba includes a `®sheye' option (bottom of the options

menu Fig. 7(a)) which automatically selects which chunks

are suppressed and which are displayed. Selecting the ®sh-

eye option adds two elements to Jaba's interface (Fig. 8(a)

and (b)): a `®sheye threshold' slider widget appears in the

top-right of the window, and a focal point identi®er/selector

is added to the text-editor.

The focal point identi®er/selector is shown as a small

arrow in the left-margin of the text-editor. The program

line pointed to by the focal point arrow is highlighted.

The focal point is relocated by vertically dragging the

arrow, and when the arrow is released, the DOI formula

(Section 2.3) is used to calculate whether each chunk in

the program is displayed or suppressed. The threshold slider

controls the k threshold value for determining the lowest

DOI value to be displayed. Modifying the threshold value

also causes the DOI formula to be called, with consequent

changes to the suppression and display of program chunks.

In Fig. 8(b) the user has decreased the threshold value from

21 (Fig. 8(a)) to 23, causing the for loop inside method

make-®ve-®elds to be expanded. The graphical overview

window in Fig. 8(b) shows that methods oneRow, make-

tota¼ and make-dice have also been expanded by decreas-

ing the threshold value.

In implementing Furnas's DOI formula, we found it

necessary to normalise the DOI values to ensure that at

least one chunk has a DOI value of 21. Consider a program-

mer moving from focal point A to focal point B in the

program shown in Table 2. The API and distance values

for focal points A and B are shown in Fig. 9 Ð the paired

values in parentheses identify the distance of each abbre-

viated program line from focal points A and B respectively.

The un-normalised DOI values are shown in the table.

Assuming that the user initially focuses on Point A with a

threshold value of 22, all program lines will be suppressed

except for the focal line `m� z[i];' and the conditional

statement that provides its context `IF (x , y) THEN'.

When the user moves to focal point B, all program lines,

even the focal point, will be suppressed because the highest

DOI value (23) is lower than the threshold. Normalising the

DOI values assures that focal information is displayed,

consequently saving the user from having to continually

modify the threshold value.

In Jaba, the DOI formula's automatic selection of chunks

for suppression does not affect the user's ability to explicitly

tailor the level of detail in the display through the hypertext

links or graphical overview.

3.6. Other capabilities

3.6.1. Superclasses and method overriding

Jaba automatically provides hyperlinking to super

classes, super constructors and overridden methods. Text

referring to super classes and super-constructors is coloured

green for consistency with links to other object classes and

their methods (Section 3.1). Overriding methods are linked

A. Cockburn / Information and Software Technology 00 (2001) 000±0008

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

Table 2

A program segment with API, Distance and DOI values for focal points A and B

Focus Code API A Dist A DOI B Dist B DOI

IF (x , y) THEN 21 1 22 3 24

FOR i� 1 TO 10 DO 22 1 23 4 26

x� x 1 1; 23 2 25 5 28

y� y p 2; 23 2 25 5 28

z[I]� I; 23 2 25 5 28

END; 22 1 23 4 26

@ A m� z[I]; 22 0 22 4 26

ELSE 21 2 23 2 23

FOR x� 1 TO 10 DO 22 3 25 1 23

@ B z[x]� x; 23 4 27 0 23

END; 22 3 25 2 24

END; 21 2 23 3 24

ARTICLE IN PRESS

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 05-09-2001 12:48 article rw Alden



UNCORRECTED P
ROOF

with the method that they override by a small up-arrow icon

which is displayed in the text immediately after the name of

the method.

3.6.2. Dynamic parsing of text additions

As the user types new program lines into the text editor,

the lines are automatically parsed and the necessary hyper-

links are added. Currently each line is parsed only when the

newline key is pressed. This will often be too late to help

programmers who want to use the object's methods within

the current line. Ideally, Jaba would allow users to dynami-

cally select methods or data-®elds from menus associated

with each object variable in a similar manner to that

supported by systems like Jbuilder3, VisualCafeÂ,4 and

Visual J115

Dynamically updating Jaba's state to re¯ect the program-

mer's modi®cations to the program is a major technical

challenge. The program is almost certain to become

temporarily syntactically incorrect during the programmer's

editing changes: for instance, missing close-braces for

methods, loops, conditionals, etc. One solution would be

to use a syntax-directed editor, such as the Cornell Program

Synthesizer [26], to ensure that the program is constantly

syntactically correct. We strongly suspect that programmers

would resist such functionality because of the constrained

work¯ow that it imposes on program exposition. Instead,

Jaba supports two-levels of parsing. As each new line of

program code is typed, it is scanned against regular expres-

sions to determine its form. If potential hypertext links are

detected, then they are added when the return key is pressed.

The chunking structure of the program is not dynamically

updated. Instead, the complete class is reparsed only when

the programmer explicitly requests that the class be

`rescanned' (selected from the ®le menu). Jaba does not

currently offer debugging assistance when the chunking

mark-up of the program, or the program itself, contains

syntax errors.

3.6.3. Linkages with the java compiler and virtual machine

Jaba is linked with the Java compiler and virtual machine.

If the class displayed in a Jaba window contains a main

method, then the `Compile and Run' menu option under

the `File' menu is active. Selecting this option compiles

all of the classes necessary to run the class, and runs the

program in the Java virtual machine.

4. Design considerations

This section discusses the major design considerations

that shaped the design and implementation of Jaba. By

making Jaba's design rationale explicit, we aim to aid the

reusability and repeatability of the work on Jaba. The design

considerations, discussed in Sections 4.1±4.3, are separated

into three categories that address the following questions:

1. How should program abstractions (or chunks) be

formed?

2. How should the user interface support tailoring levels of

program detail?

3. What additional program interlinking capabilities are

required?

4.1. Forming abstractions in the program

In order to allow the user to tailor the level of program

detail, systems such as Jaba must form a structural repre-

sentation of program content. There are many possible

approaches to extracting this structural information. Literate

programming systems such as noweb (Section 2.1), for

example, require that the structural information is explicitly

speci®ed by user-de®ned textual markup in the program

source. Other systems automatically extract structural infor-

mation using knowledge of the syntactic rules of the

programming language (Section 6). Jaba uses a hybrid of

these approaches, automatically detecting `natural' abstrac-

tions in the program code (such as methods, loops and

conditionals), while also permitting the user to explicitly

add their own abstractions.

A more complex issue is how to apply literate

programming chunking concepts within an object-oriented

A. Cockburn / Information and Software Technology 00 (2001) 000±000 9

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

Fig. 9. API and Distance values for each program line (abbreviated) with focal points A and B in the program segment shown in Table 2. Values in parentheses

show the distances from focal points A and B respectively.

3 JBuilder is a registered trademark of Borland International Inc.
4 Visual CafeÂ is a trademark of Semantec.
5 Visual J11 is a trademark of Microsoft Corporation.

ARTICLE IN PRESS

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 05-09-2001 12:48 article rw Alden



UNCORRECTED P
ROOF

programming environment. Knuth described literate

programming as an alternative to top-down or bottom-up

design, allowing programs to be expressed and read in a

`psychologically correct order'. Object-oriented program-

ming, in contrast, focuses on reuse of well-encapsulated

individual object descriptions; small program units then

tie the objects together into programs. Object encapsulation

makes the notion of a `psychologically correct order' a weak

one in object-oriented programming.

In designing Jaba, we decided to limit chunk encapsula-

tion mechanisms to the text contained within individual

Java class ®les. The primary motivation for this decision

stems from concerns about the programmer's familiarity

with the class representation provided by the system. Each

Jaba text-editing window is limited to the same text extent

as the ¯at text-editors that programmers would normally use

to edit Java classes, consequently once all chunks are

expanded each window provides a `standard' ¯at text repre-

sentation of the class contents. If Jaba's editing windows

could include text segments from more than one class ®le

(through a sophisticated implementation of literate chunk-

ing structure) then there would be a potentially confusing

inconsistency between the contents of the window display

and the user's knowledge of what `should' be contained in

Java class ®les.

4.2. Interface for tailoring levels of detail

There were two major considerations in designing the

interface for tailoring the level of program detail revealed.

First, where and how to reveal the details of expanded

chunks, and second, what events should trigger chunk

expansion and contraction.

ésterbye's [20] hypertext system for object-oriented

literate programming in Smalltalk displayed each expanded

chunk in a new window. Jaba, in contrast, displays the

content of each newly expanded chunk in-line within the

text-editor window in a manner that is similar to folding

editors. Three factors motivated this decision. First, creating

a new window for each new chunk is likely to raise a

substantial user-interface overhead in window management.

In the worst case, n classes each with m chunks will result in

n £ m windows. With in-line expansion, the maximum

number of windows is equal to the number of class ®les.

Second, an in-line representation of the class ®le is likely to

be more familiar to programmers than the fragmented view

provided by multiple windows because when all chunks are

expanded in-line the window provides a standard `¯at' text

editor. Third, in-line expansion maintains the context of

each node within its surrounding information space. Chunks

may be co-located within the class ®le for speci®c reasons-

in-line expansion maintains this co-location but separate

windows would not. Finally, Jaba's interactive graphical

representation of chunking structure is intended to aid

perception of the structural relationship between chunks in

the class ®le.

In determining what events should trigger chunk expan-

sion and contraction, we strongly favoured explicit user

control over the level of detail revealed. Implicit schemes-

such as the automatic suppression of chunks when users

relocate their focus in Furnas's original ®sheye view

system-will sometimes incorrectly suppress chunks that

the user wishes to see (the DOI formula is a heuristic assess-

ment of likely interest). In Jaba, the main mechanism for

control over the level of detail is through explicit selection

of chunk names, either in the graphical overview or in the

text-editor. Even when the ®sheye view mechanism is acti-

vated (Section 3.5), explicit user selection of chunk names

overrides the level of detail provided by the DOI formula. A

further enhancement, not yet implemented in Jaba, would be

to allow the user to lock certain chunks so that they cannot

be expanded or contracted by the DOI formula.

4.3. Additional hypertext interlinking

Section 4.1 discussed the design rationale for choosing to

limit Jaba to intra- rather than inter-class chunk structures. A

consequence of this decision is that inter-class relationships

must be managed through other mechanisms. Jaba parses all

object variable declarations and instantiations, and these are

linked to appropriate classes. Clicking the hypertext link

associated with the class name causes either the class to

be displayed in a Jaba window or the javadoc for the class

to be displayed in the javadoc window (and/or web browser

according to the set options). Method invocations from

object variables are also linked to the associated classes,

but access to data-®elds from object variables are not. The

rationale behind this decision was a trade-off between the

utility of linking to data-®elds and the display clutter of

adding more links to the class display. Further enhance-

ments to the object interlinking, not yet supported by

Jaba, include dynamic selection of object methods from

pop-up menus associated with object variables in a manner

similar to that provided by commercial systems such as

JBuilder, VisualCafeÂ, and Visual J11.

5. Discussion and further work

Table 3 provides a summary of Jaba's interface and func-

tionality across eleven categories of system properties that

we believe are desirable. These properties provide a distilla-

tion of our experiences in designing, implementing and

using Jaba, combined with recommendations extracted

from related work. Only properties 10 and 11, clari®ed in

the table, have not been introduced in preceding sections of

the paper. Summary information for Visual J11 is included

in the table to help clarify Jaba's primary differences from a

current commercial system.

Commercial systems such as JBuilder, VisualCafeÂ

and Visual J11 support some of the features offered by

Jaba, and they offer other capabilities that Jaba does not

yet support (see Table 3). In particular, Jaba's text-editing

A. Cockburn / Information and Software Technology 00 (2001) 000±00010

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

ARTICLE IN PRESS

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 05-09-2001 12:48 article rw Alden



UNCORRECTED P
ROOF

A. Cockburn / Information and Software Technology 00 (2001) 000±000 11

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

Table 3

Summarising Jaba's capabilities, and comparing them to a standard commercial software development tool (Microsoft's Visual J11)

Property Jaba J11 Comment on Jaba's support

1 Integrated environment for

editing and browsing

u u Supports `abstracted' browsing of documentation as well as editing details

(unlike Javadoc which only supports abstracted browsing)

2 Automatic extraction of

semantic `abstractions'

² Methods

u u

² Loops and conditionals

u

² User-de®ned chunks

u Users can group related units of code into `chunks', and they can de®ne

documentation chunks. Chunks can be nested

3 Light-weight creation of

abstractions

u Existing text can be chunked by selecting it, making a menu-selection and

naming the chunk

Chunks can be created in advance of text by menu-selection and naming

User-de®ned abstractions can be classi®ed as `generic' or `documentation'

4 Easy transition between levels

of abstraction

u u Hypertext links in text window expand and contract chunks

Plus/minus icons in graphical tree window expand and contract chunks

Shortcuts to expand/contract all chunks of speci®c types

Shortcuts to previously visited levels of abstraction

Option for automatic detail con®guration through ®sheye view

5 In-line expansion of abstracted

details

u Extent of expanded region denoted by temporary shading

6 Support interactive

visualisations of the object

structure

u u Dynamic con®guration of graphical tree to re¯ect program display

Navigational shortcuts through graphical tree

Icons provide semantic information about chunk types

7 Contextual information about

suppressed code

u Tailorable font-size for abstracted text: invisible, tiny and legible

Tailorable representation of context (extent, structure, and contents) of

suppressed code

8 Context-sensitive hypertext

linking between classes

u u Hyperlinks dynamically computed for super classes, super constructors,

over-ridden methods, object variable declarations and instantiations, and

method invocations

Automatic display of associated method in Jaba window or in javadoc on

following a method invocation link

J11, VisualCafeÂ, etc, provide method name completion (which Jaba does

not), but do not support hypertext navigation to the class

Jaba's identi®cation of over-riding methods currently limited to one-level

of inheritance

9 Integration with existing tools u u Integrated with java tools (javadoc, compiler, and virtual machine)

Integrated with Netscape (through Netscape's remote control capabilities,

see http://home.netscape.com/newsref/std/x-remote.hfor display of javadoc

Jaba is not readily adaptable to other languages. Although its techniques are

adaptable, it has not been written in a language-independent manner

10 Non-intrusive support u u Fully expanded views provide a generic `¯at' text editor that does not

require users to adopt the abstraction and chunking features

11 Enhanced presentation of

source text

u Only minimal adoption of program display principles such as those of [1,2]

Semantic information currently captured by Jaba could allow improved

presentation in future work

ARTICLE IN PRESS

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 05-09-2001 12:48 article rw Alden



UNCORRECTED P
ROOF

capabilities are rudimentary, and it is unlikely that commercial

programmers would be willing to exchange their proprietary

software development environments for Jaba. Commercial

development, however, was not a design goal. Rather, Jaba

explores new interface paradigms for visualising, browsing,

editing and documenting object-oriented programs, and it

demonstrates powerful capabilities for working with programs

at con®gurable levels of detail. Such capabilities are not yet

available in commercial packages.

To date, Jaba has only been informally evaluated. It has

been used in lectures to assist teaching introductory Java

programming to ®rst year undergraduate students (approxi-

mately 600 students in the class), and for teaching Graphical

User Interface programming with Java Swing to second year

students (approximately 150 students in the class). As a

teaching aid, the ability to expand and contract program

segments is particularly useful for directing students' atten-

tion to salient program segments. The hypertext linking to

other classes and to Javadoc is also extremely useful for

demonstrating inter-class relationships.

Eight post-graduate students have also used Jaba in a

single thirty minute unstructured session for browsing the

class ®les associated with a traf®c-light simulation program

(thirteen classes, and a total of approximately 3000 lines of

code. All of the students were familiar with the traf®c-light

simulation program. Comments from the students were

positive, with three of the eight describing the interface as

`cool'. More substantive comments focussed on the positive

aspects of being able to `block out the irrelevant stuff' and

`focus on what you are interested in'. Several of the students

stated that they thought they would be able to ®nd needed

program sections more quickly using Jaba than their normal

program editing tools.

One problem reported by two of the students arose when

using the `Legible' setting for suppressed program

segments. With this setting, it is possible (but uncomforta-

ble) to read the program text. The students reported that they

had to `squint' at the text to read it, prior to realising that

they could expand the chunk by clicking on the appropriate

chunk. None of the students reported this problem when

using the invisible or `tiny' settings for suppressed code.

There are many potential directions for further work.

Jaba's text-editing environment could be improved to

bring it closer to commercial systems, and more work on

its typographical display of programs (property 11) would

improve program visualisation. Another area for further

work on the system would be to allow user-de®ned chunk

types to be created (beyond the ®ve identi®ed in Section

3.1). This would enable a wide range of new capabilities:

in particular, it could be used to support different documen-

tation perspectives on the same code chunk, such as `expo-

sition' and `rationale' perspectives [20].

The major focus of further work will be on evaluation.

The most important question to be addressed is the follow-

ing:

Do the interface and cognitive overheads of de®ning and

con®guring levels of abstraction outweigh the quantitative

and qualitative bene®ts?

Quantitative bene®ts can be explored in a similar manner

to Furnas's [8] investigation of search times and error rates

in `¯at' text displays versus ®sheye displays. Upcoming

evaluations will measure search times and error rates in

®nding lines of program code that cause Java compilation

errors.

6. Related systems

The Tioga editor within the Cedar programming environ-

ment [27] stored documents in a tree structure of nodes. This

allowed users to successively reveal levels of document

details, or all levels up to a certain depth. Although users

were able to expand and contract global levels of details, it

appears that they were unable to selectively inspect inner

levels of detail along a speci®c branch. This limitation

would prohibit the simultaneous visualisation of the details

of two distant regions in the document. It is not clear from

the paper how Tioga's abstraction capabilities were applied

to program code.

Several systems have applied holophrasting techniques

(Section 2.2) to programming languages. The contraction

and expansion of text within programs can be based on

program constructs such as statement blocks and procedure

de®nitions, or on the formal properties of the programming

language's grammar. BNF syntactic rules specifying the

allowable derivations from `non-terminal' symbols to

lower-level non-terminals and to `terminals' can be used

to store the program as a hierarchy of specialisation. In

the EMILY system [10], for instance, users constructed,

modi®ed, and visualised program text through BNF-based

holophrasts. The primary dif®culty with grammar-based

holophrast abstractions is that they require programmers

to work through the formal levels of language. Programmers

must therefore have a thorough knowledge of the language's

grammar, and they cannot make `shortcuts' through the

levels of syntactic decomposition-for instance, even if the

programmer knows that she wants an if statement she must

still navigate through the syntactic rules that expand the

grammar's non-terminals into an if statement.

None of the systems reviewed above, nor the ®sheye

program visualisations presented in Section 2.3, provide

contextual information about the contents of abstracted

units when they are suppressed. Holophrasting, folding

editors (such as Tioga) and Furnas's program ®sheye

views totally elide [2] suppressed text, replacing it with

ellipses. They therefore offer no indication of the extent,

contents and structure of the suppressed program fragments.

Smith, Barnard and Macleod [25] described a variant holo-

phrasting text suppression technique called `compaction' in

which line-breaks are removed to display several lines of

code on the same line. The tailorable views of suppressed

details offered by Jaba are, to our knowledge, the ®rst

A. Cockburn / Information and Software Technology 00 (2001) 000±00012

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

ARTICLE IN PRESS

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 05-09-2001 12:48 article rw Alden



UNCORRECTED P
ROOF

investigation into the use of scalable fonts in support of

contextual awareness in programming environments.

Several researchers have investigated ®sheye-based text

visualisation. Keahey and Marley [13] performed an experi-

ment with a variation of ®sheye text to determine its effec-

tiveness in helping users search through structured text. The

results indicate that users preferred ®sheye views for certain

searching tasks, but that none preferred it for reading. Their

implementation of the ®sheye scheme was unusual in that

text suppression was achieved by decreasing (to negative

values) the text's inter-line gap. This caused dense text that

wrote over the top of neighbouring lines.6

Scalable fonts can be reduced to one pixel per line of text,

but even at this severe level of miniaturisation it will be

impossible to display large text ®les within a single display

space without scrolling. The Information Mural [12],

however, demonstrates a variety of display scaling techni-

ques including text display schemes that require less than

one pixel per line.

Within synchronous groupware research, several proto-

type ®sheye text systems have been developed to experi-

ment with new ways of allowing users to stay aware of each

others' actions in shared text-based information spaces

[9,28]. These prototypes do not support programming, nor

do they provide any support for moving between levels of

abstraction. They do, however, support tailorable levels of

text magni®cation in a similar manner to Jaba.

Together/J7 [19] is an extensive commercial Java and

C11 software development environment. It integrates

many of the capabilities of UML object modelling [4]

including package and class diagrams into its support for

Java programming. Modi®cations within Together/J's text

editor are immediately re¯ected in the corresponding class-

diagram editors, and vice-versa. Equivalent capabilities

could (and should) be supported by Jaba. The levels of

abstraction supported by Together/J's class diagram editors

are equivalent to those of javadoc-package and class. Users

are unable to create new abstractions that correspond to their

own cognitive units in the program, nor can users succes-

sively reveal inner levels of detail within the abstractions

supported by the system.

7. Summary

The Jaba system presented in this paper demonstrates a

novel and synergistic integration of four user-interface tech-

niques that have been proposed to assist programmers:

literate programming, holophrasting displays, ®sheye visua-

lisation techniques and hypertext. Literate programming

supports programmers in dividing their programs into

cognitive `chunks' that are linked to other chunks. Holo-

phrasting displays allow programmers to tailor the level of

detail revealed in an information space by suppressing

portions of the text. Fisheye techniques provide sophisti-

cated visualisations of suppressed text that offer a trade-

off between the provision of contextual information and

use of display space. The integration of these techniques

in Jaba enables programmers to con®gure their displays to

reveal only the program details that are salient to their task

while suppressing super¯uous `clutter'. Contextual infor-

mation on the extent, structure and contents of the

suppressed program text can be displayed through customi-

sable miniaturised renderings of the text. Extensive automa-

tically generated hypertext links facilitate rapid navigation

between different levels of detail and between interlinked

object classes and their contents.

To date Jaba is a proof of concept system that has been

used to edit and modify several small Java programs.

Although implementation details such as the absence of

integrated debugging support and it's relatively crude text-

editor preclude Jaba's viability in commercial software

development, there are no reasons why the abstraction,

visualisation and hypertext techniques demonstrated by

the system should not scale-up successfully. The results of

preliminary informal evaluations of the system are encoura-

ging.

Acknowledgements

This research is supported by New Zealand Royal Society

`Marsden' grant. Many thanks to Saul Greenberg at

Calgary, Gerhard Fischer and the L3D research group at

Boulder, Kai-Uwe Loser at Dortmund, and Warwick Irwin

and Matthew Smith at Canterbury for comments on this

work.

References

[1] R. Baecker, A. Marcus, Design principles for the enhanced presenta-

tion of computer program source text. Human Factors in Computing

Systems II, Proceedings of the CHI'86, pp. 51±58, 1986.

[2] R.M. Baecker, A. Marcus, Human Factors and Typography for More

Readable Programs, Addison-Wesley, Reading, MA, 1990.

[3] D.R. Barstow, H.E. Shrobe, E. Sandewall (Eds.), Interactive Program-

ming Environments McGraw-Hill, New York, 1984.

[4] G. Booch, I. Jacobson, J. Rumbaugh, The Uni®ed Modeling

Language User Guide, Addison-Wesley, Reading, MA, 1998.

[5] A. Cockburn, N. Churcher, Towards Literate Tools for Novice

Programmers, ACM Australasian Computer Science Education

Conference'97, Melbourne, Australia, 2±4 July, ACM Press, 1997

pp. 107±116.

[6] J. Conklin, Hypertext: an introduction and survey, IEEE Computer 20

(9) (1987) 17±41.

[7] L. Friendly, The design of distributed hyperlinked programming

documentation, Proceedings of the International Workshop on Hyper-

media Design, Montpellier, France, 1±2 June, pp. 151±173, Springer,

1995.

[8] G.W. Furnas, Generalized Fisheye Views, Human Factors in Comput-

ing Systems III Proceedings of the CHI'86 Conference, North

Holland/ACM, Amsterdam, 1986 pp. 16±23.

A. Cockburn / Information and Software Technology 00 (2001) 000±000 13

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

6 Jaba assigns different font-sizes for the levels of magni®cation it

supports, therefore text is not over-written.
7 Together/J is a registered trademark of Object International, Inc.

ARTICLE IN PRESS

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 05-09-2001 12:48 article rw Alden



UNCORRECTED P
ROOF

[9] S. Greenberg, C. Gutwin, A. Cockburn, Awareness Through Fisheye

Views in Relaxed-WYSIWIS Groupware, Proceedings of Graphics

Interface Conference, 21±24 May, Toronto, Canada, Morgan-Kauf-

mann, Los Altos, CA, 1996 pp. 28±38.

[10] W.J. Hansen, User engineering principles for interactive systems, in:

D.R. Barstow, H.E. Shrobe, E. Sandewall (Eds.), Interactive Program-

ming Environments, McGraw-Hill, New York, 1984, pp. 288±299.

[11] M. Heinrichs, Evaluating a Focus 1 Context Zoom Interface in

Complement with Hypertext as a Program Understanding Tool,

1998. MSc Thesis. Computer Science, Simon Fraser University,

Vancouver. http://www.cs.sfu.ca/,heinrica/personal/CZoom/.

[12] D.F. Jerding, J.T. Stasko, The information mural: a technique for

displaying and navigating large information spaces, IEEE Transac-

tions on Visualization and Computer Graphics 4 (3) (1998) 257±271.

[13] T.K. Keahey, J. Marley, Viewing text With non-linear magni®cation:

an experimental study. Technical Report, Computer Science, 215

Lindley Hall, Indiana University, 1996.

[14] D. Knuth, Literate programming stanford California: center for the

study of language and information. CSLI Lecture Notes no. 27, 1992.

[15] D.E. Knuth, Literate programming, The Computer Journal 27 (2)

(1984) 97±111.

[16] J. Lamping, R. Rao, P. Pirolli, A focus 1 context technique based on

hyperbolic geometry for visualising large hierarchies, Proceedings of

CHI'95 Conference on Human Factors in Computing Systems

Denver, 7±11 May, pp. 401±408, 1995.

[17] Y.K. Leung, M. Apperley, A review and taxonomy of distortion-

oriented presentation techniques, ACM Transactions on Computer

Human Interaction 1 (2) (1994) 126±160.

[18] S. Mukherjea, Y. Hara, Focus 1 Context Views of World-Wide Web

Nodes, Proceedings of the ACM Hypertext '97, University of South-

ampton, UK, 6±11 April, ACM Press, 1997 pp. 187±196.

[19] Object International, Inc. Together/ J Product family.http://www.to-

getherj.com/, 1999.

[20] K. ésterbye, Literate smalltalk programming using hypertext, IEEE

Transactions on Software Engineering 21 (2) (1995) 138±145.

[21] N. Ramsey, Literate programming simpli®ed, IEEE Software 11 (5)

(1994) 97±105.

[22] M. Sarkar, M.H. Brown, Graphical Fisheye Views of Graphs,

Proceedings of CHI'92 Conference on Human Factors in Computing

Systems Monterey, 3±7 May, Addison-Wesley, Reading, MA, 1992

pp. 83±91.

[23] D. Schaffer, Z. Zuo, S. Greenberg, L. Bartram, J. Dill, S. Dubs, M.

Roseman, Navigating hierarchically clustered networks through ®sh-

eye and full-zoom methods, ACM Transactions on Computer Human

Interaction 3 (2) (1996) 162±188.

[24] B. Shneiderman, Direct manipulation: a step beyond programming

languages (excerpt), in: R.M. Baecker, W.A.S. Buxton (Eds.), Read-

ings in Human Computer Interaction: A Multidisciplinary Approach,

Morgan Kaufmann, Los Altos, CA, 1987, pp. 461±467.

[25] S.R. Smith, D.T. Barnard, I.A. Macleod, Holophrasted displays in an

interactive environment, International Journal of Man±Machine

Studies 20 (4) (1984) 343±355.

[26] T. Teitelbaum, The cornell program synthesizer: a syntax-directed

programming environment, Communications of the ACM 24 (9)

(1981) 563±573.

[27] W. Teitelman, A tour through cedar, IEEE Transactions on Software

Engineering 11 (3) (1985) 285±302.

[28] P. Weir, A. Cockburn, Distortion-Oriented Workspace Awareness in

DOME, People and Computers XII (Proceedings of the 1998 British

Computer Society Conference on Human±Computer Interaction),

Shef®eld Hallam University, Shef®eld, Springer, Berlin, 1998 pp.

239±252.

A. Cockburn / Information and Software Technology 00 (2001) 000±00014

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

ARTICLE IN PRESS

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 05-09-2001 12:48 article rw Alden


