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Abstract

This paper describes the `Jaba' program editor and browser that allows users to tailor the level of abstraction at which they visualise,

browse, edit and document object-oriented programs. Its design draws on concepts from literate programming, holophrasting displays,

®sheye visualisation and hypertext to allow programmers to rapidly move between abstract and detailed views of Java classes. The paper

focuses on the motivation for, and user interface issues surrounding, the integration of these facilities in Jaba. Limitations in the current tools

and theories for programming support are identi®ed, and modi®cations are proposed and demonstrated. Examples include overcoming the

static post-hoc documentation support provided by Javadoc, and normalising Furnas's `degree of interest' ®sheye visualisation formula to

avoid excessive suppression of program segments. q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Computer programming is a demanding activity.

Programmers work within complex information spaces at

many different levels of abstraction. For example, modify-

ing the internal structure of a method requires a detailed

view of its contents, but invoking a method needs only an

abstract view of its method signature to determine the

number, type and order of parameters. Fig. 1 shows the

problem in an object-oriented program. It shows a program

line inside class X, and the possible points of reference that

the programmer may wish to view in association with the

line. The ®gure also shows the limited display extent of a

`typical' editor window into class X. To ease these problems

modern programming environments include powerful

searching and marking capabilities, and many support

context-sensitive editing features such as pop-up menus

that let the programmer select available methods from

object reference variables. Despite these enhancements,

each editor window is essentially a `¯at' representation of

program text that displays the programmer's focal point of

interest and whatever neighbouring text ®ts into the window

extent; scrolling, searching and marking must be used to

move between related program segments that lie outside

the display extent of the window.

This paper describes `Jaba', a hypertext system that

supports programmers in visualising, browsing, editing

and documenting object-oriented programs. By integrating

concepts from `literate programming' [15,14], `holophrast-

ing displays' [25], `®sheye views' [8], and hypertext [6],

Jaba allows programmers to tailor the level of program

detail displayed across an arbitrary number of program

regions. It automatically divides the program into `chunks'

that encapsulate syntactic program units, and users can add

further chunks to capture the cognitive units that they

perceive in their programs. Literate programming techni-

ques support a strong connection between program code

and its associated documentation. Holophrasting schemes

allow the user to show or hide program regions, and ®sheye

views are used to tailor the level of detail shown at, and

around, the user's focal point in the program. The aim is to

enhance the user's ability to focus on, and navigate through,

the salient program details without the distraction of

display-space clutter from super¯uous information.

The structure of the paper is as follows. Section 2

provides background reviews of literate programming, holo-

phrasting interfaces and ®sheye views. The javadoc system,

which produces HTML documentation from Java classes is

included in the review to motivate enhancements in systems

such as Jaba. Readers who are familiar with these techni-

ques may wish to move directly to Section 3 which

describes the Jaba system. Section 4 provides the rationale

behind the major design decisions, and Section 5 critically
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assesses Jaba's capabilities and discusses further work.

Interactive programming environments that demonstrate

related capabilities to those of Jaba are presented in Section

6. Section 7 summarises and concludes the paper.

2. Background: programming and levels of detail

2.1. Literate programming

Literate programming [14,15] is an elegant technique that

allows programmers to design, document, and construct

their programs in whatever order best aids human under-

standing. Using a literate programming tool, users can

arrange programming elements and their accompanying

documentation in whatever order they choose, rather than

having the order of exposition dictated by the requirements

of the language's compiler or interpreter. The resultant

literate program consists of `chunks' of code and documen-

tation in which the chunks represent cognitive units in the

program. These cognitive chunks need not correspond to the

programming language's syntactic constructs. For example,

a cognitive chunk for a looping construct may contain a set

of variable assignments that establish pre- and post-condi-

tions in addition to the syntactic elements of the loop.

De®ned chunks can be used by zero or more other chunks.

Literate programs can be `tangled' to produce code that is

ready for processing by a compiler or interpreter, or they can

be `woven' to produce documentation that includes exten-

sive cross-referencing and indexing of program elements.

Literate techniques allow programmers to describe their

programs clearly and precisely, with their documentation

integrated into the program, in a manner that is impossible

with standard CASE tools. Fig. 2 shows the mark-up of a

java class `QuickDemo' that implements the quick sort

algorithm using the literate programming tool noweb [21].

Chunk de®nitions are denoted by the construct ! Chunk

Name @ � , and chunk uses by ! Chunk Name @ . The

`root' chunk is identi®ed by the chunk-name p . The root

chunk in Fig. 2 `uses' four chunks (`Import Packages',

`Static variable declarations', `The QuickSort method' and

`The main program'), which are each de®ned later in the

literate program. Chunks may be de®ned in any order.

Documentation chunks begin with the @ symbol.

The text-based mark-up of literate programs adds a layer of

syntax on-top of the programming language syntax. Mistakes

in the speci®cation of the chunking structure cause syntax

errors when the literate program is `tangled' or `woven'. For

this reason Knuth did not advocate the use of literate program-

ming for students or hobbyists. Graphical user interfaces,

however, can overcome these problems by providing `syntac-

tic correctness' [24] Ð when the user requests modi®cation to

the chunking structure, the program can assure that the correct

syntactic modi®cations are made to the underlying program.

Such a graphical user interface to literate programming for

novice programmers is described in [5].

2.2. Holophrasting program displays

Holophrasting interfaces [3,25] aim to improve visualisa-

tion of textual information spaces by providing contextual

overviews that allow users to suppress or `elide' the display

of regions of text.

Holophrasting systems extract structural information
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Fig. 1. Interconnections arising from one program line. Window display space over laid in class X.
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from the document source. Document markup tags such as

section and subsection headings can be used to determine

structure. A variety of schemes has been proposed for

extracting structure from computer programs. These include

using the grammatical rules of derivation for the language,

and the use of program blocks such as the sequence of

statements between opening and closing braces in C. Holo-

phrasting systems are reviewed in Section 6.

The document regions to be suppressed may be under

direct user control, or may be automatically con®gured as

the user moves their cursor through the document. A variety

of interface mechanisms can be used to reveal that text has

been suppressed-the most common is to display an ellipsis

(`¼'). Fig. 3 shows 20 lines of the QuickDemo class in a

normal view (unholophrasted) and in a holophrasted view

which uses ellipsis to represent suppressed text: line

numbers are shown on the left of the program text. Note

that the holophrasted display reveals the entire extent of the

class (®rst line to the last line).

2.3. Fisheye visualisations

Furnas [8] introduced ®sheye views as a way of allowing

users to simultaneously view the details of their focal point

of interest in an information space while also displaying the

surrounding contextual information. Fisheye views have

become a popular research topic and many systems have

extended the research, particularly in graphical information

spaces [17,18]. When applied to text, ®sheye views are a

powerful holophrasting technique in which the display

contents are automatically adapted in an attempt to match

the user's interest in regions in the document.

A simple `degree of interest' (DOI) formula is used to

calculate the user's `interest' in all of the data-points in the

information space (Eq. (1)). The two factors used in this

calculation are the user's a priori interest in the data, and

the distance that the data lies from the user's current focal

point.

DOIfisheye�xu: � y� � API�x�2 Distance�x; y� �1�

DOIfisheye�xu: � y� returns the user's interest in the infor-

mation at point x, given that their current focus of attention

is directed at point y. API(x) returns the user's a priori

interest in data point x Ð it is a measure of the semantic

importance of the information. In a map, for instance, it is

reasonable to expect that cities would have a higher a priori

interest than towns. In computer programs, API values

decrease with the nesting depth of program elements.

Distance(x, y) is a measure of the distance between points

x and y Ð in hierarchical data structures such as computer

programs, distance may be measured in terms of path

distance between nodes, rather than as an absolute measure.

If the calculated DOI measure for data-point x falls below

a threshold k, then the information at that point is suppressed

or `elided' (not displayed). In our experience, it is necessary

to normalise the values returned by the DOI formula: this

issue is further discussed in Section 3.5.

Furnas describes several example systems, including a

visualisation mechanism for C programs. In this system,

program details around the user's focus of interest are

displayed in full, while only the `landmark' program

segments are displayed further from the user's location,

producing program views similar to the holophrasted view

shown in Fig. 3. Ellipses and non-contiguous line-numbers

are used to indicate that lines in the text have been

suppressed. Furnas provides preliminary empirical evidence

that ®sheye techniques can assist in searching hierarchical

information.

Recent work on ®sheye visualisations has greatly

extended the original work, particularly in graphical

displays of networks (for example, Refs. [23,16]). Fisheye

visualisation techniques now offer many capabilities that
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Fig. 2. Literate mark-up of a segment of the QuickDemo class using noweb

[21].

Fig. 3. Twenty lines of the QuickDemo class in normal and holophrasted

views.
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could be used to enhance the C program visualisation

system originally proposed by Furnas. Multiple focal points

[22] would allow programmers to selectively reveal the

details of several points within program ®les, such as an

editing point and a secondary reference point. Another

possibility is to enrich the display mechanisms used to

denote suppressed lines of text. Techniques such as scalable

fonts would reveal much more information about the

suppressed information while consuming minimal amounts

of screen real-estate. Systems demonstrating text-based ®sh-

eyes are reviewed in Section 6.

One potential problem with ®sheye view techniques

arises from the DOI formula's calculation of the user's

degree of interest. The formula implements a heuristic

assessment of the user's likely degree of interest, and it

will sometimes incorrectly suppress desired information or

display information that is unnecessary for the user's task.

Thus, the formula will make it dif®cult for programmers to

explicitly select portions of the text that should be displayed

regardless of the user's movement within the program. The

equivalent of `manual overrides', or holophrasting, in the

interface could be used to ensure that regions in the program

stay displayed regardless of their calculated degree of inter-

est.

2.4. Javadoc documentation

One of the major claims of the object-oriented program-

ming paradigm is that it encourages and supports code

reuse. In Java, code comprehension and reuse is greatly

enhanced by the availability of javadoc1 [7] documentation.

The javadoc tool generates HTML documentation by

parsing the contents of class ®les, and extracting informa-

tion about methods, data-®elds and any specially formatted

comments. All of the Java API (application programmer's

interface) can be reviewed with a web-browser through

javadoc's consistent and easily comprehensible format.

Fig. 4(a) shows a the javadoc generated for the QuickDemo

class constructor and its qsort method.

Sun's Java2 javadoc produces framed HTML (Fig. 4(b)).

The frames ease navigating between high-level packages,

but the code-level documentation remains similar to version

1.1. The Continuous Zoom interface [11] used a graphical

®sheye technique to ease navigation between package level

views of the Java API and the javadoc documentation pages.

There are several opportunities for enhancing the support

javadoc offers. First, javadoc produces static documentation

that is separate from the actual code. Code modi®cations

can therefore render the documentation redundant or incor-

rect. A dynamic version of javadoc could automatically

ensure consistency between the documentation and the

program code. Second, javadoc is a post-hoc documentation

strategy that requires that the class have been developed into

a syntactically correct (and presumably complete) class

speci®cation. An extension to javadoc could offer dynami-

cally generated documentation even for partially complete

classes. Third, javadoc offers only a single level of abstrac-

tion for investigating the class: it reveals method signatures,

the names and types of class data-®elds, and any specially

formatted comments that the programmer has written at the
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Fig. 4. Javadoc documentation. (a) Java 1 javadoc of the QuickDemo class; (b) Java 2 framed javadoc documentation of the class java.lang.String.

1 http://java.sun.com/products/jdk/javadoc/.
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top-level in the class (formatted comments inside methods

are ignored). An extension to javadoc could allow program-

mers to investigate the internal details of classes, for

instance checking the details of the algorithm contained

within a method. The Jaba system, described in Section 3,

attempts to exploit each of these opportunities.

3. Jaba: system description

Jaba is an experimental tool for editing and browsing Java

programs. Although its implementation is tightly bound to

the Java programming language, most of the interface prop-

erties demonstrated by the tool could be adapted to a wide

set of object-oriented programming languages.

3.1. Jaba overview

Fig. 5 shows a typical Jaba window, which contains two

sub-windows: a graphical tree representation of the class

structure (left), and a hypertextual text editor/viewer

(right). An HTML text-viewer for displaying javadoc docu-

mentation is also available (bottom of Fig. 6). The graphical

tree and javadoc windows can be hidden through check-

boxes under the `View' menu.

When a class is loaded into a Jaba window it is displayed

at the most abstract level (as in Fig. 5). Only top-level

chunks are shown, and none of the inner-details of those

chunks is revealed. The GuiYahtzee.java class displayed

in Fig. 5 contains over 400 program lines, but the entire

extent of the class (®rst line to last line) is shown in the

text-editor window. Semantic information about chunk-

types is displayed in the graphical tree. Jaba supports ®ve

different types of chunks (Table 1), each of which has its

own iconic representation in the graphical tree.

Users reveal successive levels of inner detail within

chunks by clicking on the plus icons in the tree representa-

tion or by clicking the hypertext links in the text viewer/

editor. When a chunk is expanded, the text it contains is

shaded grey for two seconds to help the user perceive the

extent of the newly displayed information contained in the

chunk. The hypertext links associated with contracted

chunks are coloured red and expanded links are coloured

blue (all colours are con®gurable). Chunks are contracted by

clicking on the link or by clicking the corresponding minus

icon in the tree viewer. Several interface features are

intended to assist programmers in navigating through the

program. For instance, clicking on the name of a chunk in

the graphical tree causes the text display to immediately

scroll to the associated chunk. Other interface mechanisms

that assist navigation are described in Section 3.4.

The top-half of Fig. 6 shows the system state after

expanding two levels of inner detail. First, the user clicked

the ScoringMethods link, which encapsulated two Java

methods clickScoreCell and attach-listener). This caused

abstracted representations of these methods to be displayed,

showing only their signatures. The user subsequently

clicked on the clickScoreCell hypertext link, revealing the

inner-details of that method's code.

Jaba parses classes prior to displaying them. All ®ve types

of abstractions are detected, the types of all object variables

are stored, and method invocations are detected, as are

connections with super-classes such as overriding methods
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Fig. 5. Jaba's main window, showing the `main' class of the Yahtzee program.
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method invocation has a hypertext link attached to it

(coloured green) allowing easy inspection of the associated

method details. The declaration of every object variable is

similarly linked to the associated class. When these links are

clicked, if a class ®le of the object type is available on the

user's class path,2 then the class details are displayed in a

new Jaba window. Otherwise, if javadoc documentation of

the class is available then it is displayed in the HTML

viewer at the bottom of the window and in an external

web-browser if the appropriate options are set (using the

Options menu). For example, the bottom half of Fig. 6

shows the javadoc documentation for the Button class.

This was displayed when the user clicked the Button hyper-

text link associated with the declaration of the ®rst para-

meter in the attach_listener method. When the user clicks

on method invocation links, Jaba or javadoc immediately

scroll to display the appropriate method description.

3.2. Tailoring the representation of context

Figs. 5 and 6 show no contextual information about the

contents of unexpanded chunks-all chunks in Fig. 5 are

unexpanded, and in Fig. 6 chunk attach-listener in the

text-edit window is unexpanded. This is similar to the

approach described by Furnas (Section 2.3) in which

suppressed information is completely hidden from the user.

Jaba allows users to tailor the representation of the

abstracted information by selecting one of three text-sizes

for the suppressed text (Fig. 7(a)). The `Invisible' option

completely suppresses the abstracted details (as shown in

Figs. 5 and 6). The `Tiny' option, shown in Fig. 7(b),

provides limited contextual information about the

suppressed information contained within a chunk. Although

the text is not legible, the tiny option provides indications of

the amount of suppressed information, its overall structure

(apparent from indentation and from the number of red or

blue portions which represent further abstractions), and

limited information about the contents-blocks of green, for

instance, reveal many declarations. The extreme miniatur-

isation of the `tiny' font assures that minimal screen real-

estate is dedicated to contextual information. The `Legible'

option renders suppressed text in a very small, but just legi-

ble, font. This option is a trade-off between the detailed

views provided by expanding chunks and the broad views

that are enabled by hiding and miniaturising suppressed

chunks.
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Table 1

Five chunk types supported by Jaba and their iconic representation

Chunk type Icon Comment

Generic abstraction User-de®ned generic

chunks. Used, for

example, to group a set

of related methods

Documentation User-de®ned

documentation chunks

Methods Jaba automatically

detects methods and

stores their contents as

chunks that can be

contracted and expanded

Constructors Constructor methods are

automatically detected

Statement blocks Jaba automatically

detects statement blocks

contained in loops and

conditionals

Fig. 6. Expanding abstractions, and inspecting object details.

2 The Java class-path determines where to search for source-code asso-

ciated with java classes.
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Section 2.1 noted that traditional interfaces to the

mark-up of literate programs introduce a second layer

of syntax on top of the programming language. This

raises the possibility of syntax errors in the mark-up

of the literate structure.

Part of Jaba's chunking structure is automatically

extracted from the program code, without the need for any

additional mark-up-methods, inheritance, loops and condi-

tionals, for instance, are all automatically extracted, as are

the hypertext links to other classes and their methods. When

the user chooses to explicitly create new abstractions, the

new mark-up is embedded within Java comments. Although

the user can enter the mark-up for new chunking structure

by typing it directly, the normal way to do so is through

menu options.

To convert an already existing section of code or

documentation into a chunk, the user ®rst selects the

region to be chunked and then selects the `Chunk the

selection' option from the `Edit' menu. To create a new

chunk before its contents have been written, the user

selects `Add chunk' from the `Insert menu'. In either

case, a pop-up dialogue box prompts the user for a chunk

name and type. The type can be either `Abstraction'-for

generic abstractions such as a grouping of related meth-

ods-or `Documentation'. The appropriate syntactically

correct comments are then added to the text to mark-up

the new chunking structure. There are no limits to the nest-

ing depth of the chunk structure.
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Fig. 7. Selecting and displaying `tiny' text for abstracted program details; (a) Selecting the `tiny' size; (b) `Tiny' text revealing the context of abstracted

chunks.

Fig. 8. Fisheye selection of suppressed regions. (a) Threshold value 21; (b) Threshold value 23.
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3.4. Shortcuts for exploring abstractions

Several system capabilities are intended to assist users in

rapidly attaining the `right level' of abstraction in their

visualisation of classes. A variety of short-cuts, accessed

under the `Options' menu (Fig. 7(a)), allow users to expand

or contract speci®c chunk types within the class. Through

this menu, users can selectively contract or expand all

chunks of each semantic type (generic abstraction, docu-

mentation, methods, constructors, or statement blocks), or

they can choose to contract or expand all chunks regardless

of type. Expanding all chunks provides a standard `¯at' text-

editor with hyperlinking to the objects referred to in the

class.

The system also remembers prior levels of abstraction

within any chunk, allowing users to quickly refer back to

previously inspected program regions. For example, if the

user expands ®ve levels of detail within chunk X, they can

contract all of that detail by clicking the top-level link to X.

When the user next expands X it will automatically display

the ®ve levels of detail that it previously showed.

3.5. Automatic DOI display con®guration

Jaba includes a `®sheye' option (bottom of the options

menu Fig. 7(a)) which automatically selects which chunks

are suppressed and which are displayed. Selecting the ®sh-

eye option adds two elements to Jaba's interface (Fig. 8(a)

and (b)): a `®sheye threshold' slider widget appears in the

top-right of the window, and a focal point identi®er/selector

is added to the text-editor.

The focal point identi®er/selector is shown as a small

arrow in the left-margin of the text-editor. The program

line pointed to by the focal point arrow is highlighted.

The focal point is relocated by vertically dragging the

arrow, and when the arrow is released, the DOI formula

(Section 2.3) is used to calculate whether each chunk in

the program is displayed or suppressed. The threshold slider

controls the k threshold value for determining the lowest

DOI value to be displayed. Modifying the threshold value

also causes the DOI formula to be called, with consequent

changes to the suppression and display of program chunks.

In Fig. 8(b) the user has decreased the threshold value from

21 (Fig. 8(a)) to 23, causing the for loop inside method

make-®ve-®elds to be expanded. The graphical overview

window in Fig. 8(b) shows that methods oneRow, make-

tota¼ and make-dice have also been expanded by decreas-

ing the threshold value.

In implementing Furnas's DOI formula, we found it

necessary to normalise the DOI values to ensure that at

least one chunk has a DOI value of 21. Consider a program-

mer moving from focal point A to focal point B in the

program shown in Table 2. The API and distance values

for focal points A and B are shown in Fig. 9 Ð the paired

values in parentheses identify the distance of each abbre-

viated program line from focal points A and B respectively.

The un-normalised DOI values are shown in the table.

Assuming that the user initially focuses on Point A with a

threshold value of 22, all program lines will be suppressed

except for the focal line `m� z[i];' and the conditional

statement that provides its context `IF (x , y) THEN'.

When the user moves to focal point B, all program lines,

even the focal point, will be suppressed because the highest

DOI value (23) is lower than the threshold. Normalising the

DOI values assures that focal information is displayed,

consequently saving the user from having to continually

modify the threshold value.

In Jaba, the DOI formula's automatic selection of chunks

for suppression does not affect the user's ability to explicitly

tailor the level of detail in the display through the hypertext

links or graphical overview.

3.6. Other capabilities

3.6.1. Superclasses and method overriding

Jaba automatically provides hyperlinking to super

classes, super constructors and overridden methods. Text

referring to super classes and super-constructors is coloured

green for consistency with links to other object classes and

their methods (Section 3.1). Overriding methods are linked
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Table 2

A program segment with API, Distance and DOI values for focal points A and B

Focus Code API A Dist A DOI B Dist B DOI

IF (x , y) THEN 21 1 22 3 24

FOR i� 1 TO 10 DO 22 1 23 4 26

x� x 1 1; 23 2 25 5 28

y� y p 2; 23 2 25 5 28

z[I]� I; 23 2 25 5 28

END; 22 1 23 4 26

@ A m� z[I]; 22 0 22 4 26

ELSE 21 2 23 2 23

FOR x� 1 TO 10 DO 22 3 25 1 23

@ B z[x]� x; 23 4 27 0 23

END; 22 3 25 2 24

END; 21 2 23 3 24
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with the method that they override by a small up-arrow icon

which is displayed in the text immediately after the name of

the method.

3.6.2. Dynamic parsing of text additions

As the user types new program lines into the text editor,

the lines are automatically parsed and the necessary hyper-

links are added. Currently each line is parsed only when the

newline key is pressed. This will often be too late to help

programmers who want to use the object's methods within

the current line. Ideally, Jaba would allow users to dynami-

cally select methods or data-®elds from menus associated

with each object variable in a similar manner to that

supported by systems like Jbuilder3, VisualCafeÂ,4 and

Visual J115

Dynamically updating Jaba's state to re¯ect the program-

mer's modi®cations to the program is a major technical

challenge. The program is almost certain to become

temporarily syntactically incorrect during the programmer's

editing changes: for instance, missing close-braces for

methods, loops, conditionals, etc. One solution would be

to use a syntax-directed editor, such as the Cornell Program

Synthesizer [26], to ensure that the program is constantly

syntactically correct. We strongly suspect that programmers

would resist such functionality because of the constrained

work¯ow that it imposes on program exposition. Instead,

Jaba supports two-levels of parsing. As each new line of

program code is typed, it is scanned against regular expres-

sions to determine its form. If potential hypertext links are

detected, then they are added when the return key is pressed.

The chunking structure of the program is not dynamically

updated. Instead, the complete class is reparsed only when

the programmer explicitly requests that the class be

`rescanned' (selected from the ®le menu). Jaba does not

currently offer debugging assistance when the chunking

mark-up of the program, or the program itself, contains

syntax errors.

3.6.3. Linkages with the java compiler and virtual machine

Jaba is linked with the Java compiler and virtual machine.

If the class displayed in a Jaba window contains a main

method, then the `Compile and Run' menu option under

the `File' menu is active. Selecting this option compiles

all of the classes necessary to run the class, and runs the

program in the Java virtual machine.

4. Design considerations

This section discusses the major design considerations

that shaped the design and implementation of Jaba. By

making Jaba's design rationale explicit, we aim to aid the

reusability and repeatability of the work on Jaba. The design

considerations, discussed in Sections 4.1±4.3, are separated

into three categories that address the following questions:

1. How should program abstractions (or chunks) be

formed?

2. How should the user interface support tailoring levels of

program detail?

3. What additional program interlinking capabilities are

required?

4.1. Forming abstractions in the program

In order to allow the user to tailor the level of program

detail, systems such as Jaba must form a structural repre-

sentation of program content. There are many possible

approaches to extracting this structural information. Literate

programming systems such as noweb (Section 2.1), for

example, require that the structural information is explicitly

speci®ed by user-de®ned textual markup in the program

source. Other systems automatically extract structural infor-

mation using knowledge of the syntactic rules of the

programming language (Section 6). Jaba uses a hybrid of

these approaches, automatically detecting `natural' abstrac-

tions in the program code (such as methods, loops and

conditionals), while also permitting the user to explicitly

add their own abstractions.

A more complex issue is how to apply literate

programming chunking concepts within an object-oriented
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Fig. 9. API and Distance values for each program line (abbreviated) with focal points A and B in the program segment shown in Table 2. Values in parentheses

show the distances from focal points A and B respectively.

3 JBuilder is a registered trademark of Borland International Inc.
4 Visual CafeÂ is a trademark of Semantec.
5 Visual J11 is a trademark of Microsoft Corporation.
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programming environment. Knuth described literate

programming as an alternative to top-down or bottom-up

design, allowing programs to be expressed and read in a

`psychologically correct order'. Object-oriented program-

ming, in contrast, focuses on reuse of well-encapsulated

individual object descriptions; small program units then

tie the objects together into programs. Object encapsulation

makes the notion of a `psychologically correct order' a weak

one in object-oriented programming.

In designing Jaba, we decided to limit chunk encapsula-

tion mechanisms to the text contained within individual

Java class ®les. The primary motivation for this decision

stems from concerns about the programmer's familiarity

with the class representation provided by the system. Each

Jaba text-editing window is limited to the same text extent

as the ¯at text-editors that programmers would normally use

to edit Java classes, consequently once all chunks are

expanded each window provides a `standard' ¯at text repre-

sentation of the class contents. If Jaba's editing windows

could include text segments from more than one class ®le

(through a sophisticated implementation of literate chunk-

ing structure) then there would be a potentially confusing

inconsistency between the contents of the window display

and the user's knowledge of what `should' be contained in

Java class ®les.

4.2. Interface for tailoring levels of detail

There were two major considerations in designing the

interface for tailoring the level of program detail revealed.

First, where and how to reveal the details of expanded

chunks, and second, what events should trigger chunk

expansion and contraction.

ésterbye's [20] hypertext system for object-oriented

literate programming in Smalltalk displayed each expanded

chunk in a new window. Jaba, in contrast, displays the

content of each newly expanded chunk in-line within the

text-editor window in a manner that is similar to folding

editors. Three factors motivated this decision. First, creating

a new window for each new chunk is likely to raise a

substantial user-interface overhead in window management.

In the worst case, n classes each with m chunks will result in

n £ m windows. With in-line expansion, the maximum

number of windows is equal to the number of class ®les.

Second, an in-line representation of the class ®le is likely to

be more familiar to programmers than the fragmented view

provided by multiple windows because when all chunks are

expanded in-line the window provides a standard `¯at' text

editor. Third, in-line expansion maintains the context of

each node within its surrounding information space. Chunks

may be co-located within the class ®le for speci®c reasons-

in-line expansion maintains this co-location but separate

windows would not. Finally, Jaba's interactive graphical

representation of chunking structure is intended to aid

perception of the structural relationship between chunks in

the class ®le.

In determining what events should trigger chunk expan-

sion and contraction, we strongly favoured explicit user

control over the level of detail revealed. Implicit schemes-

such as the automatic suppression of chunks when users

relocate their focus in Furnas's original ®sheye view

system-will sometimes incorrectly suppress chunks that

the user wishes to see (the DOI formula is a heuristic assess-

ment of likely interest). In Jaba, the main mechanism for

control over the level of detail is through explicit selection

of chunk names, either in the graphical overview or in the

text-editor. Even when the ®sheye view mechanism is acti-

vated (Section 3.5), explicit user selection of chunk names

overrides the level of detail provided by the DOI formula. A

further enhancement, not yet implemented in Jaba, would be

to allow the user to lock certain chunks so that they cannot

be expanded or contracted by the DOI formula.

4.3. Additional hypertext interlinking

Section 4.1 discussed the design rationale for choosing to

limit Jaba to intra- rather than inter-class chunk structures. A

consequence of this decision is that inter-class relationships

must be managed through other mechanisms. Jaba parses all

object variable declarations and instantiations, and these are

linked to appropriate classes. Clicking the hypertext link

associated with the class name causes either the class to

be displayed in a Jaba window or the javadoc for the class

to be displayed in the javadoc window (and/or web browser

according to the set options). Method invocations from

object variables are also linked to the associated classes,

but access to data-®elds from object variables are not. The

rationale behind this decision was a trade-off between the

utility of linking to data-®elds and the display clutter of

adding more links to the class display. Further enhance-

ments to the object interlinking, not yet supported by

Jaba, include dynamic selection of object methods from

pop-up menus associated with object variables in a manner

similar to that provided by commercial systems such as

JBuilder, VisualCafeÂ, and Visual J11.

5. Discussion and further work

Table 3 provides a summary of Jaba's interface and func-

tionality across eleven categories of system properties that

we believe are desirable. These properties provide a distilla-

tion of our experiences in designing, implementing and

using Jaba, combined with recommendations extracted

from related work. Only properties 10 and 11, clari®ed in

the table, have not been introduced in preceding sections of

the paper. Summary information for Visual J11 is included

in the table to help clarify Jaba's primary differences from a

current commercial system.

Commercial systems such as JBuilder, VisualCafeÂ

and Visual J11 support some of the features offered by

Jaba, and they offer other capabilities that Jaba does not

yet support (see Table 3). In particular, Jaba's text-editing
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Table 3

Summarising Jaba's capabilities, and comparing them to a standard commercial software development tool (Microsoft's Visual J11)

Property Jaba J11 Comment on Jaba's support

1 Integrated environment for

editing and browsing

u u Supports `abstracted' browsing of documentation as well as editing details

(unlike Javadoc which only supports abstracted browsing)

2 Automatic extraction of

semantic `abstractions'

² Methods

u u

² Loops and conditionals

u

² User-de®ned chunks

u Users can group related units of code into `chunks', and they can de®ne

documentation chunks. Chunks can be nested

3 Light-weight creation of

abstractions

u Existing text can be chunked by selecting it, making a menu-selection and

naming the chunk

Chunks can be created in advance of text by menu-selection and naming

User-de®ned abstractions can be classi®ed as `generic' or `documentation'

4 Easy transition between levels

of abstraction

u u Hypertext links in text window expand and contract chunks

Plus/minus icons in graphical tree window expand and contract chunks

Shortcuts to expand/contract all chunks of speci®c types

Shortcuts to previously visited levels of abstraction

Option for automatic detail con®guration through ®sheye view

5 In-line expansion of abstracted

details

u Extent of expanded region denoted by temporary shading

6 Support interactive

visualisations of the object

structure

u u Dynamic con®guration of graphical tree to re¯ect program display

Navigational shortcuts through graphical tree

Icons provide semantic information about chunk types

7 Contextual information about

suppressed code

u Tailorable font-size for abstracted text: invisible, tiny and legible

Tailorable representation of context (extent, structure, and contents) of

suppressed code

8 Context-sensitive hypertext

linking between classes

u u Hyperlinks dynamically computed for super classes, super constructors,

over-ridden methods, object variable declarations and instantiations, and

method invocations

Automatic display of associated method in Jaba window or in javadoc on

following a method invocation link

J11, VisualCafeÂ, etc, provide method name completion (which Jaba does

not), but do not support hypertext navigation to the class

Jaba's identi®cation of over-riding methods currently limited to one-level

of inheritance

9 Integration with existing tools u u Integrated with java tools (javadoc, compiler, and virtual machine)

Integrated with Netscape (through Netscape's remote control capabilities,

see http://home.netscape.com/newsref/std/x-remote.hfor display of javadoc

Jaba is not readily adaptable to other languages. Although its techniques are

adaptable, it has not been written in a language-independent manner

10 Non-intrusive support u u Fully expanded views provide a generic `¯at' text editor that does not

require users to adopt the abstraction and chunking features

11 Enhanced presentation of

source text

u Only minimal adoption of program display principles such as those of [1,2]

Semantic information currently captured by Jaba could allow improved

presentation in future work
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capabilities are rudimentary, and it is unlikely that commercial

programmers would be willing to exchange their proprietary

software development environments for Jaba. Commercial

development, however, was not a design goal. Rather, Jaba

explores new interface paradigms for visualising, browsing,

editing and documenting object-oriented programs, and it

demonstrates powerful capabilities for working with programs

at con®gurable levels of detail. Such capabilities are not yet

available in commercial packages.

To date, Jaba has only been informally evaluated. It has

been used in lectures to assist teaching introductory Java

programming to ®rst year undergraduate students (approxi-

mately 600 students in the class), and for teaching Graphical

User Interface programming with Java Swing to second year

students (approximately 150 students in the class). As a

teaching aid, the ability to expand and contract program

segments is particularly useful for directing students' atten-

tion to salient program segments. The hypertext linking to

other classes and to Javadoc is also extremely useful for

demonstrating inter-class relationships.

Eight post-graduate students have also used Jaba in a

single thirty minute unstructured session for browsing the

class ®les associated with a traf®c-light simulation program

(thirteen classes, and a total of approximately 3000 lines of

code. All of the students were familiar with the traf®c-light

simulation program. Comments from the students were

positive, with three of the eight describing the interface as

`cool'. More substantive comments focussed on the positive

aspects of being able to `block out the irrelevant stuff' and

`focus on what you are interested in'. Several of the students

stated that they thought they would be able to ®nd needed

program sections more quickly using Jaba than their normal

program editing tools.

One problem reported by two of the students arose when

using the `Legible' setting for suppressed program

segments. With this setting, it is possible (but uncomforta-

ble) to read the program text. The students reported that they

had to `squint' at the text to read it, prior to realising that

they could expand the chunk by clicking on the appropriate

chunk. None of the students reported this problem when

using the invisible or `tiny' settings for suppressed code.

There are many potential directions for further work.

Jaba's text-editing environment could be improved to

bring it closer to commercial systems, and more work on

its typographical display of programs (property 11) would

improve program visualisation. Another area for further

work on the system would be to allow user-de®ned chunk

types to be created (beyond the ®ve identi®ed in Section

3.1). This would enable a wide range of new capabilities:

in particular, it could be used to support different documen-

tation perspectives on the same code chunk, such as `expo-

sition' and `rationale' perspectives [20].

The major focus of further work will be on evaluation.

The most important question to be addressed is the follow-

ing:

Do the interface and cognitive overheads of de®ning and

con®guring levels of abstraction outweigh the quantitative

and qualitative bene®ts?

Quantitative bene®ts can be explored in a similar manner

to Furnas's [8] investigation of search times and error rates

in `¯at' text displays versus ®sheye displays. Upcoming

evaluations will measure search times and error rates in

®nding lines of program code that cause Java compilation

errors.

6. Related systems

The Tioga editor within the Cedar programming environ-

ment [27] stored documents in a tree structure of nodes. This

allowed users to successively reveal levels of document

details, or all levels up to a certain depth. Although users

were able to expand and contract global levels of details, it

appears that they were unable to selectively inspect inner

levels of detail along a speci®c branch. This limitation

would prohibit the simultaneous visualisation of the details

of two distant regions in the document. It is not clear from

the paper how Tioga's abstraction capabilities were applied

to program code.

Several systems have applied holophrasting techniques

(Section 2.2) to programming languages. The contraction

and expansion of text within programs can be based on

program constructs such as statement blocks and procedure

de®nitions, or on the formal properties of the programming

language's grammar. BNF syntactic rules specifying the

allowable derivations from `non-terminal' symbols to

lower-level non-terminals and to `terminals' can be used

to store the program as a hierarchy of specialisation. In

the EMILY system [10], for instance, users constructed,

modi®ed, and visualised program text through BNF-based

holophrasts. The primary dif®culty with grammar-based

holophrast abstractions is that they require programmers

to work through the formal levels of language. Programmers

must therefore have a thorough knowledge of the language's

grammar, and they cannot make `shortcuts' through the

levels of syntactic decomposition-for instance, even if the

programmer knows that she wants an if statement she must

still navigate through the syntactic rules that expand the

grammar's non-terminals into an if statement.

None of the systems reviewed above, nor the ®sheye

program visualisations presented in Section 2.3, provide

contextual information about the contents of abstracted

units when they are suppressed. Holophrasting, folding

editors (such as Tioga) and Furnas's program ®sheye

views totally elide [2] suppressed text, replacing it with

ellipses. They therefore offer no indication of the extent,

contents and structure of the suppressed program fragments.

Smith, Barnard and Macleod [25] described a variant holo-

phrasting text suppression technique called `compaction' in

which line-breaks are removed to display several lines of

code on the same line. The tailorable views of suppressed

details offered by Jaba are, to our knowledge, the ®rst
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investigation into the use of scalable fonts in support of

contextual awareness in programming environments.

Several researchers have investigated ®sheye-based text

visualisation. Keahey and Marley [13] performed an experi-

ment with a variation of ®sheye text to determine its effec-

tiveness in helping users search through structured text. The

results indicate that users preferred ®sheye views for certain

searching tasks, but that none preferred it for reading. Their

implementation of the ®sheye scheme was unusual in that

text suppression was achieved by decreasing (to negative

values) the text's inter-line gap. This caused dense text that

wrote over the top of neighbouring lines.6

Scalable fonts can be reduced to one pixel per line of text,

but even at this severe level of miniaturisation it will be

impossible to display large text ®les within a single display

space without scrolling. The Information Mural [12],

however, demonstrates a variety of display scaling techni-

ques including text display schemes that require less than

one pixel per line.

Within synchronous groupware research, several proto-

type ®sheye text systems have been developed to experi-

ment with new ways of allowing users to stay aware of each

others' actions in shared text-based information spaces

[9,28]. These prototypes do not support programming, nor

do they provide any support for moving between levels of

abstraction. They do, however, support tailorable levels of

text magni®cation in a similar manner to Jaba.

Together/J7 [19] is an extensive commercial Java and

C11 software development environment. It integrates

many of the capabilities of UML object modelling [4]

including package and class diagrams into its support for

Java programming. Modi®cations within Together/J's text

editor are immediately re¯ected in the corresponding class-

diagram editors, and vice-versa. Equivalent capabilities

could (and should) be supported by Jaba. The levels of

abstraction supported by Together/J's class diagram editors

are equivalent to those of javadoc-package and class. Users

are unable to create new abstractions that correspond to their

own cognitive units in the program, nor can users succes-

sively reveal inner levels of detail within the abstractions

supported by the system.

7. Summary

The Jaba system presented in this paper demonstrates a

novel and synergistic integration of four user-interface tech-

niques that have been proposed to assist programmers:

literate programming, holophrasting displays, ®sheye visua-

lisation techniques and hypertext. Literate programming

supports programmers in dividing their programs into

cognitive `chunks' that are linked to other chunks. Holo-

phrasting displays allow programmers to tailor the level of

detail revealed in an information space by suppressing

portions of the text. Fisheye techniques provide sophisti-

cated visualisations of suppressed text that offer a trade-

off between the provision of contextual information and

use of display space. The integration of these techniques

in Jaba enables programmers to con®gure their displays to

reveal only the program details that are salient to their task

while suppressing super¯uous `clutter'. Contextual infor-

mation on the extent, structure and contents of the

suppressed program text can be displayed through customi-

sable miniaturised renderings of the text. Extensive automa-

tically generated hypertext links facilitate rapid navigation

between different levels of detail and between interlinked

object classes and their contents.

To date Jaba is a proof of concept system that has been

used to edit and modify several small Java programs.

Although implementation details such as the absence of

integrated debugging support and it's relatively crude text-

editor preclude Jaba's viability in commercial software

development, there are no reasons why the abstraction,

visualisation and hypertext techniques demonstrated by

the system should not scale-up successfully. The results of

preliminary informal evaluations of the system are encoura-

ging.
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