
Writing, Reading, Watching: A Task-Based Analysis and Review of

Learners’ Programming Environments

Tim Wright and Andy Cockburn
Department of Computer Science

University of Canterbury, Christchurch
{tnw13,andy}@cosc.canterbury.ac.nz

Abstract
This paper identifies three fundamental learning activi-
ties in the development of literary skills—writing, read-
ing, and watching—and describes the potential benefits
of supporting these activities when learning to program
computers. We analyse the support for writing, reading
and watching provided by current educational program-
ming environments and show that no current systems
offer comprehensive and integrated support for the three
activities. In particular, support for watching the re-
lationship between the program code and the resultant
program behaviour is poor.

1 Introduction
The ability to use computers is rapidly becoming an es-
sential skill for everyday life. The ability to program
computers, however, remains largely in the hands of
highly trained professionals. The disparity between nor-
mal use and programming is changing, and the rate
of change is likely to increase as users’ needs and ca-
pabilities demand more from their computing environ-
ments. Already many home appliances, such as mi-
crowave ovens and VCRs, require elements of program-
ming skills to operate them effectively, and most ‘end-
user’ computing applications enable much higher levels
of efficiency if users know a few fundamentals of pro-
gramming: examples include spread-sheet applications,
mail-merge facilities and macro recorders.

Since Papert invented Logo in the 1970s [9] there
has been substantial interest in programming environ-
ments for children. Educationalists have attempted to
understand the merits of teaching programming as a
tool for promoting ‘structured thinking’ and ‘construc-
tivist learning’ [11] (for example, [6]). Computer sci-
entists have developed many diverse systems that at-
tempt to improve children’s ability to program. The
focus of many of these systems has been on developing
innovative programming paradigms that have ranged
from graphical rewrite rules through to video-game

metaphors. Despite these fascinating technical develop-
ments, there has been a lack of investigation into fun-
damental learning activities in programming.

In this paper, we provide a ‘first principles’ analysis of
three fundamental learning activities—writing, reading
and watching—that should be supported by all learners’
programming environments. We argue that these activ-
ities offer a natural scaffolding structure that promotes
learning and can encourage transfer effects that ease
the transition from elementary to advanced program-
ming concepts. We also show, by review, that these
tasks are not supported in an integrated manner by
current state-of-the-art educational programming envi-
ronments. This analysis provides design guidance that
we will use in continuing our development of learners’
programming environments.

2 Writing, Reading, Watching
Vygotsky [20] argues that interaction with adults and
more competent peers is a pivotal factor in effective
learning. Rose’s studies of children learning how to read
and write amplify this issue: “one of the best predictors
of reading and writing success is the amount of ‘expert’
reading children have seen in the home as their parents
read to them or write stories as children dictate” [14].
We use the term ‘watching’ to encapsulate this learning
process of observing actions and interacting with more
competent peers.

When learning how to program computers there are
two sources of more competent peers that the student
can observe and interact with to test and build their
understanding. First, the student can work with human
collaborators (teachers or fellow students). This may be
through normal face-to-face interaction (such as that
supported by AlgoBlock [18], see Section 3), through
some form of groupware support (for example, Cleogo
[3], see Section 3.4), or through a computerised agent
that emulates human behaviour.

Second, and the focus of this paper, the computer

1



itself provides an interactive platform for experimenta-
tion. When the student writes a program, its behaviour
is a dynamic embodiment (the watchable form) of the
program (the readable form) that the student has ex-
pressed (the written form). Using natural language as
an analogy, this is equivalent to the student expressing a
verbal phrase (for instance, saying the words “The cow
runs”), then seeing both the words The cow runs and
an animation of a running cow on the screen (Figure 1).

We use the terms writing, reading and watching to en-
capsulate three fundamental activities in working with
computer programs. Writing is the process of record-
ing or encoding a series of program actions. The writing
process may be supported by a standard text based lan-
guage (such as C), through visual symbols (for example,
programming graphical user interfaces in Visual Basic
or HyperCard), or through a programming by exam-
ple interface such as Eager [5]. Reading is the process
of reviewing the static representation of a previously
recorded program. Watching is the process of mapping
between the learner’s understanding of the program and
the observed dynamic behaviour of the running pro-
gram.

When programming, users manipulate various sym-
bols in order to specify the program’s behaviour within
the output domain. These symbols can vary from Fre-
gan [17], abstract, representations of the concepts they
encode (for example, weight++) through iconic repre-
sentations (an iconic depiction of a person’s swelling
belly) to tangible objects (an inflatable robot). Addi-
tionally, these symbols can exist at many different levels
of abstraction from the problem domain.

2.1 Programming Gulfs
By separating the three activities of writing, reading
and watching, and by giving a user-centred perspec-
tive to the symbols used for each, we aim to illumi-
nate the learning problems that users have when map-
ping between their understanding and the mechanisms
provided by the programming environment. Extend-
ing Norman’s user-centred design concepts of the gulfs
of execution and evaluation [8], we us the terms ‘gulf
of expression’, ‘gulf of representation’ and ‘gulf of vi-
sualisation’ to describe these mapping difficulties (see
Figure 1).
Gulf of Expression. Programmers must translate
their internal mental model of the desired program be-
haviour into the syntax and symbols of the program-
ming language. This gulf causes a trade-off in language
design between the level of abstraction of the language’s
symbols and its potential generality. Conventional pro-
gramming languages, such as C or Java, use abstract
symbols for program expression, causing a large gulf be-
tween the language of expression (textual symbols) and

Figure 1: Gulfs of expression, representation and visu-
alisation.

the resultant program behaviour (possibly an animation
or a graphical user interface), but the abstract symbols
enable the language to program a wide range of different
domains. In contrast, languages with a strong mapping
between their symbols and the domain will normally be
constrained to a small set of domain-specific problems.
For example, programming by demonstration systems,
in which the input symbols are identical to the program-
ming domain, are normally limited to a specific domain
(see [10] for a discussion of domain independent pro-
gramming by demonstration).

Another factor influencing the gulf of expression is
the extent to which the programming environment con-
strains (or ‘determines’) the types of expressions that
the programmer can issue. Conventional programming
languages typically under-determine the user by pro-
viding no constraints on the textual symbols that the
user can enter. However, research systems, such as the
Cornell Program Synthesizer [19], over-determine the
programmer by requiring that statements be selected
through the language’s grammatical rules: the resul-
tant programs are guaranteed to be syntactically cor-
rect, but the user is forced to work through excessive
constraints. More recently, many commercial program-
ming environments include type-ahead facilities that al-
low programmers to select from contextual information
when available (such as the methods of an object of a
particular class), while also allowing any symbols to be
typed.
Gulf of Representation. The readable form of the
program provides a surrogate for the programmer’s
mental model. In order to understand a program, the

2



programmer must read the code (or any associated doc-
umentation) to construct their mental model of its be-
haviour. The cognitive mapping between the read-
able program form and the programmer’s mental model
causes a gulf of representation.

There is a relationship between the gulf of expression
and the gulf of representation. Programs are expressed
at a certain level of abstraction, and using particular
symbols. If they are not represented for reading in the
same way, then the programmer must master multiple
symbol sets (see Figure 1).

The gulf of representation is exacerbated by the dif-
ficulty of browsing program code. Programs consist of
interconnected procedures, rules, methods, etc., and the
user must navigate through this rich hypertextual space
to comprehend the program. Rader [12], for instance,
reported that StageCast’s lack of a visualisation compo-
nent caused difficulties for children in mapping between
the agent-based representation of rules and their mental
model of expected behaviour (see Section 3.2).
Gulf of Visualisation. A gulf of visualisation arises
when a programmer has difficulty mapping between the
observed behaviour of the running program and their
mental model. It is important to note that the pro-
gram representation serves as a surrogate for the user’s
mental model of the program. Programmers, therefore,
must map between their program’s observed behaviour
and their mental model as encoded in the program rep-
resentation. The gulf of visualisation is not only a prob-
lem for novice programmers; it also causes problems for
competent programmers who must use debuggers and
other tools to overcome the difficulties of visualising the
internal dynamic behaviour of the program.

Within educational environments the gulf of visual-
isation provides opportunities for scaffolding the stu-
dent’s understanding. Systems could allow learners to
manipulate the visualised behaviour of the environment
in a variety of ways, including changing and control-
ling the timing of execution of statements (for instance,
stepping forwards and backwards through a series of
instructions), and revealing internal structures that are
not normally viewable (for instance, the state of the run-
time stack). By providing controllable insights into the
machine’s state (through appropriate metaphors), we
believe that the programming environment can encour-
age transfer effects between novice and more advanced
programming concepts.

2.2 Reducing the gulfs
To re-cap, the gulf of expression refers to the cogni-
tive difference between the user’s mental model of the
problem domain and the mechanisms used to write the
program. The gulf of representation refers to the differ-
ence between the user’s mental model and the readable

program. The gulf of visualisation refers to the differ-
ence between the user’s mental model of the program
(normally supported by a readable surrogate) and the
behaviour of the program.

The gulfs of expression and representation can be re-
duced either by educating the users so that their men-
tal model moves closer to the computational model (the
conventional approach to programming), or by bringing
the programming mechanisms closer to the user’s model
[16]. They can also be reduced by using the same sym-
bols for expression and representation: the user need
only learn one set of mappings between the program-
ming domain and the symbols used to manipulate it.
The gulf of visualisation can be reduced by improving
the mapping between three elements: the visual display
of the program’s behaviour, the visibility of the state
of the machine, and the representation of the program
statements being executed. Finally, we hypothesise that
by appropriately designing the visualisation capabilities
of educational programming environments, it is possible
to enhance understanding of programming concepts.

3 Current Systems

Symbol Type
Language Fregan Mixed Visual Tangible
Domain centred
Logo, Alice

Domain ✬✔✬

Writing ✔

Reading ✔

Watching
Electronic Block

Domain ✬✔✬
Writing ✔

Reading ✔

Watching ✔

ToonTalk
Domain ✬✔✬

Writing ✔

Reading
Watching ✔

Writing centred
Algoblock

Domain ✔
Writing ✬✔✬

Reading ✔

Watching ✔ ✔

StageCast,
Agentsheets

Domain ✬✔✬

Writing ✔ ✬✔✬
Reading ✔ ✔

Watching ✔

Reading centred
Leogo

Domain ✔

Writing ✔ ✔ ✔

Reading ✬✔✬ ✬✔✬ ✬✔✬

Watching
Watching centred
MacBalsa

Domain
Writing
Reading ✔

Watching ✬✔✬

Table 1: Classification of languages: domain, writing,
reading and watching centred. ✬✔✬ indicates the design
focus.

This section reviews the support for writing, read-
ing and watching provided by educational programming
systems. The review is structured by grouping systems

3



that focus on the domain that they support, and those
that focus on support for writing, reading and watching
programs. Table 1 provides a summary comparison of
the symbols used for the domain, writing, reading and
watching: whether they are Fregan (e.g. ‘forward’),
mixed (e.g. a button depicting a forward arrow), vi-
sual (e.g. dragging a turtle forward with the mouse), or
tangible (e.g. dragging a turtle robot forward).

3.1 Domain centred systems
Many educational programming systems focus on pro-
viding the learner with motivating, engaging and fa-
miliar programming domains. For example, Papert’s
original version of Logo [9] and recent systems such as
Alice [4] are designed around their graphical output do-
mains: 2D turtle graphics in Logo, and a 3D object-
oriented world in Alice. Both of these systems provide
Fregan, text-based, symbol sets for reading and writ-
ing programs (‘forward’, ‘left’, ‘alice.head.turn(1)’, etc.)
Fregan languages, however, cause gulfs of representation
and expression for youthful users who may have diffi-
culty comprehending the syntax and symbols, as well
as problems with keyboard use. Logo and Alice provide
minimal support for watching programs run: the com-
plete program (or procedure call) is run in a single step,
and there is no way for the programmer to watch the
relationship between each instruction and the system
state.

ToonTalk [7] is programmed by issuing instructions
by demonstration to graphical robots within an envi-
ronment that is based on a video-game metaphor. Its
gulf of expression is low—the robot learns the demon-
strated actions—but its gulf of representation is large
because there is no support for reviewing the program
associated with each robot. Future work on ToonTalk
will ease this gulf by providing a ‘time travel’ metaphor
that will allow the programmer to revisit the actions
shown to a robot. The absence of support for read-
ing leads to a gulf of visualisation because there is no
readable surrogate for the user’s mental model of the
program.

Electronic Blocks [21] is a tangible language for chil-
dren. Children write programs by connecting electronic
Lego-like blocks together, where each block represents
a logic statement (and, not), a delay, an input (light,
noise, touch), or an output (light, noise, movement).
Although a fascinating concept, the paper describing
Electronic Blocks was published prior to implementing
or evaluating the language, and it is unclear how the
gulfs of representation, expression and visualisation will
affect the user’s interaction.

3.2 Writing centred systems
Several educational systems have investigated improved
ways of allowing children to write programs. In Algo-

Block [18], for instance, programs are written by con-
necting physical blocks in a similar manner to Electronic
Blocks. Each block represents a LOGO primitive, and
symbols on the block are used to depict its action. The
output of AlgoBlock programs is displayed on a com-
puter screen, creating a gulf of visualisation between
the program representation (the blocks) and the output
domain. AlgoBlock slightly eases this gulf by illuminat-
ing a light on each block as its associated statement is
executed.

StageCast [15] and Agentsheets [13] are designed to
let users program graphical simulations. They minimise
the gulf of expression by using graphical rewrite rules
based on ‘before and after’ conditions. The gulf of rep-
resentation is reduced by showing rules associated with
each graphical ‘agent’ in the same form as they were
entered. When the program runs, a light on each rule
illuminates whenever it fires, helping to reduce the gulf
of visualisation. Furthermore, the user can change the
speed at which rules are fired, allowing the user to step-
through a series of rule-firing actions. The main limita-
tion in the support for watching is that only one agent’s
rules can be displayed at a time, therefore providing a
constrained view of the overall program behaviour [12].
AgentSheets adds a powerful ‘analogous examples’ ca-
pability to ease writing programs: for example, having
programmed a car agent to follow a road, a train agent
can be programmed to follow a track by stating that it
does so like a car follows the road.

3.3 Reading centred systems
Leogo [2] was designed to test the concept of ‘equal
opportunity programming’ which aims to reduce the
boundaries between a programming language and its
output domain. Leogo provides three parallel ‘program-
ming paradigms’ for writing Logo programs: a Fregan
text-based dialect of Logo; an iconic representation of
Logo statements and procedures; and a set of direct
manipulation turtle manipulations. Actions expressed
in any of these three schemes causes immediate output
of an equivalent statement in the other two paradigms.
The educational objective was to encourage transfer ef-
fects between the three paradigms by allowing the user
to read equivalent statements in each language.

Other than showing the translated statements in par-
allel, Leogo offers no support for watching the relation-
ship between the program representation and its be-
haviour.

3.4 Watching centred systems
Although several systems have provided some form of
support for watching programs execute (see Table 1),
there has been a surprising lack of work explicitly focus-
ing on this fundamental learning activity. The notable

4



exception is MacBalsa [1] which allowed programming
instructors to specify animations that would be used to
clarify algorithm execution in lectures to tertiary-level
students. Although MacBalsa allowed students to read
the program code and to watch its execution, it did not
provide support for writing programs.

Cleogo [3], a synchronous groupware version of Leogo
(Section 3.3), and AlgoBlock support watching through
their support for collaboration around the program-
ming environment. This is a different interpretation of
‘watching’ than the one used elsewhere in the paper, but
one that is no less important. Rather than learning pro-
gramming behaviour by watching and comprehending
the relationship between the system behaviour and the
program code, the users collaborate in their expression
of the program, and have an opportunity to articulate
and mutually reinforce each others’ understanding.

4 Summary and Further Work
We have argued that watching is a fundamental learn-
ing activity that is poorly supported in current educa-
tional programming environments. The current focus
of programming environments for learners is on moti-
vating and engaging students, and on providing easier,
more natural, paradigms for programming. While ap-
plauding these developments, we believe that improved
support for watching program execution will help to ap-
propriately scaffold the student’s learning. In our future
work we will develop and evaluate programming envi-
ronments that explicitly support an integrated approach
to writing and reading programs, and we will partic-
ularly focus on support for watching the relationship
between the represented program and its behaviour.

Acknowledgements

Thanks to Lauri Ricker for her useful comments. This
work is supported by a New Zealand Marsden grant.

References

[1] MH Brown and R Sedgewick. Techniques for algorithm ani-
mation. IEEE Computer, 2(1):28–39, 1985.

[2] A Cockburn and A Bryant. Leogo: An equal opportunity
user interface for programming. Journal of Visual Languages
and Computing, 8(5-6):601–619, 1997.

[3] A Cockburn and A Bryant. Cleogo: Collaborative and multi-
paradigm programming for kids. In APCHI’98: Asia Pacific
Conference on Computer Human Interaction. Japan. July
15–17, pages 187–192. IEEE Computer Society Press, 1998.

[4] Matthew J. Conway. Alice: Easy-to-Learn 3D Scripting for
Novices. PhD thesis, University of Virginia, 1997.

[5] A Cypher. Eager: Programming repetitive tasks by example.
In Proceedings of CHI’91 Conference on Human Factors in
Computing Systems New Orleans, May, pages 33–39, 1991.

[6] AL Fay and RE Mayer. Benefits of teaching design skills
before teaching logo computer programming: Evidence for
syntax-independent learning. Journal of Educational Com-
puting Research, 11(3):187–210, 1994.

[7] K Kahn. ToonTalk—an animated programming environment
for children. Journal of Visual Languages and Computing,
7(2):197–217, 1996.

[8] DA Norman. The Psychology of Everyday Things. London:
Basic Books, 1988.

[9] S Papert. Mindstorms — Children, Computers, and Pow-
erful Ideas. Harvester Press, Brighton, 1980.

[10] G Paynter. Domain Independent Programming By Demon-
stration. PhD thesis, Department of Computer Science, Uni-
versity of Waikato, New Zealand, 2000.

[11] J Piaget. To Understand is to Invent: The Future of Edu-
cation. Grossman, 1973.

[12] C Rader, C Brand, and C Lewis. Degrees of Comprehen-
sion: Children’s Understanding of a Visual Programming
Environment. In Proceedings of the ACM SIGCHI’97 Con-
ference on Human Factors in Computing Systems, Atlanta,
Georgia, March 22-27, pages 351–358, 1997.

[13] A Repenning and C Perrone. Programming by Analogous
Examples. Communications of the ACM, 43(3):90–97, 2000.

[14] D Rose. Apprenticeship and exploration: A new approach
to literacy instruction. In CAST Literacy research papers
(www.cast.org), number 6. New York: Scholastic, 1995.

[15] DC Smith, A Cypher, and J Spohrer. KidSim: Program-
ming Agents Without a Programming Language. Commu-
nications of the ACM, 37(7):55–67, 1994.

[16] DC Smith, A Cypher, and L Tesler. Novice programming
comes of age. Communications of the ACM, 43(3):75–81,
2000.

[17] A Soloman. Interactions between philosophy and artificial
intelligence: The role of intuition and non-logical reasoning
in intelligence. In Proceedings of the 2nd International Joint
Conference on Artificial Intelligence (London), pages 270–
278. Morgan Kauffman, San Francisco, 1971.

[18] H Suzuki and H Kato. Interaction-level support for collab-
orative learning: AlgoBlock — an open programming lan-
guage. In ACM Conference on Computer Supported Cooper-
ative Learning (CSCL ’95). Bloomington, Indiana. October
17–20, pages 349–355. Lawrence Erlbaum Associates, Inc,
1995.

[19] T Teitelbaum. The cornell program synthesizer: A syntax-
directed programming environment. Communications of the
ACM, 24(9):563–573, 1981.

[20] LS Vygotsky. Mind in Society. Harvard University Press,
1978.

[21] P Wyeth and HC Purchase. Programming Without a Com-
puter: A New Interface For Children Under Eight. In Pro-
ceedings of the Australian User Interface Conference, Can-
berra, Australia, 31 Jan–3 Feb, pages 141–148, 2000.

5


