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ABSTRACT

Selecting items from lists is a common task in mapplications.
Alphabetically-sorted listboxes are the most comnioterface

widget used to accomplish this selection, but altfio general
they can be slow and frustrating to use, partitplahen the lists
are long. In addition, when the user regularly siétsia small set of
items, listboxes provide little support for incredsperformance
through experience. To address these shortcomiveysleveloped
a new list selection device called a ListMap, whizyanizes list
items into a space-filling array of buttons. Itene/er move in a
ListMap, which allows people to make use of spati@mory to

find common items more quickly. We carried out adsgt to

compare selection of font names from a set of 22@sfusing both
ListMaps and standard listboxes. We found thaialtjh listboxes
are faster for unknown items, revisitation leadsstgnificant

performance gains for the ListMap.

1.1 Categories and Subject Descriptors
H5.2 [Information Interfaces and Presentation ]:
Interfaces -Interaction styles

User

1.2 General Terms
Performance, Design, Experimentation, Human Factors

1.3 Keywords

List selection, listboxes, ListMaps, revisitation.

2. INTRODUCTION

Selecting items from lists is a common task in entrinteractive
systems, and the most common way to make the meleid
through a scrolling list box. For example, peope listboxes to
select currencies, languages, font names, or fuamstifrom a
variety of programs (see Figure 1). Selecting amitfrom a
listbox involves using the scrollbar to perform aiphabetic
search until the desired item is visible, and tbkcking the item
with the mouse.

Although listboxes are general, and will work imalst any task
situation, they are not always optimal. One tasit tiistboxes
support poorly is selection of items that are welbwn. In many
cases, people use only a small set of items froenligt — for
example, people normally use a small set of faams, select only
a few countries or languages out of the possiliéeradtives.
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In these situations, using listboxes can be frtisga Their
alphabetical arrangement makes it equally diffidoltfind any
item in the list, irrespective of the user’'s dommnanterest in a
small set of recurring items. Even though the ke®mws exactly
what they want to find, and they have found it mémes before,
they must scroll through the items in a similar mamto their first
search. Although this approach is robust and caunskd reliably
in any situation where items have textual labetsreiquires
cognitive effort and focused attention. A listboroyides few
opportunities for users to become experts — in iqdar,
alphabetical lists poorly support using memory apaltern
recognition as aids to task completion.

Some listboxes provide a shortcut to recently utgeds by adding
a sub-list, which we term a ‘recency cache’, toltbie(see Figure
1, right). This can help, but in cases where th&rdd item is no
longer in the cache, the user is forced to cartyteo searches
instead of one. Prior research has shown that izdagylit-menus
such as these offer limited performance improvemgfit

In this paper we present and evaluate the ListMamew way to
interact with list data that allows people to upat®ml memory to
speed up the selection of previously-seen itemstMaps
organize items into a space-filling array of buttowith all items
visible at once in static locations (see Figure \®e compared
ListMaps and listboxes in a user study where ppdits were
asked to select fonts from a set of 220 names.
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Figure 1. Listboxes for selection of currencies (f@), languages
(left), and fonts (right, with recency cache).



Figure 2. A ListMap showing 220 font names.

3. RELATED WORK

3.1 Location Memory in Interactive Systems
Spatial object location memory is knowledge of ventrings are
located in a space [8,16]. Spatial knowledge in-tlivaensional
spaces is built up primarily through interactiohatt is, people
remember locations after having had experience thih location
[5]. People may remember particular items basethodmarks in
the space, or with more experience, may be ablmamtain a
more complete ‘mental map’ in which they can remendnd find
many different objects very quickly [8,17].

For example, Robertson and colleagues tested #@lspsmory
technique (the Data Mountain) in which people pateimbnails
of web pages on a simulated inclined plane [4,0rice 100 pages
were placed, participants carried out a numbeiiraf-&nd-select
retrieval tasks. The study found that retrieval vsamificantly
faster with the spatial technique than with a stmddookmarking
system. In addition, the memory of where items wplaced
persisted over a long time: participants who regdrsix months
later were able to retrieve items at the same lef/plerformance,
with only brief retraining [4].

The items in these studies contained symbolic mé#tion
(thumbnails, colours, icons and names) as welpasiad position.
An early study by Jones and Dumais [11] showed Hyetial
memory fares less well when location is the sole turetrieval.
In their experiments, retrieval of items that werdy identified by
location was slower and less accurate than whemsitevere
represented by name. There is also evidence tbatidm learning
is dependent on the amount of effort used whenénteg with
objects [6].

3.2 Selecting from lists

List selection has been extensively researchedicpkarly in the

form of menu selection. Sears and Shneiderman ¢&8tribed

‘split menus’ for enabling faster selection of fueqtly accessed
menu items. The technique grouped a set of prevdieted menu

items ‘above the split’ at the top of the menu,uadg the target
acquisition distance. Their evaluations showed ttatic split

menus, in which the frequent items do not adapiser actions,
allow faster selections than traditional menus.yTélso suggested

further work on split menus that adapt to the sserénu selection
patterns. Findlater and McGrenere [7] implemented evaluated

these suggestions, comparing split-menu performaacess

static, adaptive and adaptable variants. Theirlteshowed that
static split-menus are reliably faster than ada&ptimes, and that
adaptable split-menus are faster than adaptive whes users are
guided by examples.

Finally, scrolling has also been studied in dethibth in the
context of lists and in larger text documents. aitgh scrolling is
common, it has been found to have two main prohléntauses
motion blur at high scroll speeds, and it causesblpms for
spatial memory [3,21]. A variety of techniques haleen
introduced to address the movement issues (e]),,dBd work
has also looked at better ways of supporting Spasnory (e.g.,
[13]) in scrollbars.

3.3 Reuvisitation and Recency Caching

Learning spatial locations is a function of expece with the
items in the data space [5,6]. Therefore, the detgravhich a user
will be able to build a mental map is related te timount of
revisitation in the task. Different situations hawdfferent

revisitation patterns, but in many information taskusers
repeatedly go back to a small set of items.

One type of revisitation is brought about by usimdy a limited

set of items. For example, McGrenere [14] foundiigurvey of
Microsoft Word users that people use only a smathber of the
available commands on a regular basis (a mean oL#0f 265).
Other revisitation arises through recency — in maagks, a
recently-used item is much more likely to be usedhe near
future than a randomly-chosen item. For exampl@etitve

patterns of use have been shown in operating systemmands
[9], and in navigation on the WWW: Tauscher andeBteerg [22]
found that more than half of pages seen were teyiand that
revisitation occurs mainly to the last few pagesited — the last
ten pages seen cover about 85% of revisits.

Revisitation can be supported with structures §gét menus, as
described above, or by visualizations of interactigstory. Hill et

al.’'s idea of ‘read wear adds graphical informaticto

computational objects to indicate the history ogithuse [10].
Depending on how the history is gathered and dysdathe
visible marks can be used to determine which ittiage been
visited more recently. A study of ‘visit wear (cbawear to
indicate which items have been visited) showed thiatal

recency information can improve revisitation intdited spaces
where memorability is difficult [20].

4. LISTMAPS: SPATIAL LAYOUT OF
LIST DATA

A ListMap takes the items in a list and lays them io a space-
filling two-dimensional grid, ordered alphabetigally row (see
Figure 2). Items are sized such that they allrfib ithe window,
ensuring that they will all be visible and that swrolling will be

required. Clicking on an item’s rectangle in thestMap is

equivalent to clicking the item in a listbox. Thaea is therefore
similar to the tool palettes used in graphics aapions, although
ListMaps do not use icons to represent items.

From this basic layout, several additional featuaes possible to

improve selection and search.

e Labels As much of the item’s label as possible is wnitiigto
the rectangle. The letters on each label give aoreble
indication of the item’s name (Figure 2).



e Tooltips Since the partial
differentiate some items, the full name is showa itag that
follows the user’'s mouse cursor (see Figure 2).

¢ Selection highlight The border outline of the currently
selected item is highlighted.

e« Colouring Items can be coloured to
differentiation in the set. Each item in the LisiMas
randomly assigned one of five colours, but colaauld also
represent other item attributes.

e Marking. Items can also be visually marked to indicate

attributes such as recent selection (i.e. the mceache used

in the study below, shown in Figure 3), frequendy o

selection, or user-chosen bookmarks.

The main design principles in a ListMap are thatit@ims are
always visible, and that they do not move. Thiswad users to
gradually change from using alphabetic search &igpmemory
as their primary search strategy for frequentlydugems. The
spatial organization is intended to solve the mrobldescribed
earlier: listboxes require approximately equal ceareffort
regardless of revisitation, but retrieving an itéma ListMap
should become easier and faster with repeatecvatras spatial
memory improves. This theoretical advantage isetesh the
experiments described below.

5. COMPARISON STUDY: LISTBOXES
AND LISTMAPS

To evaluate the idea of organizing list items spisti we carried
out a study in which we compared retrieval perfaroga with
standard listboxes and ListMaps.

5.1 Participants

Twelve participants (7 women and 5 men) were réedufrom a
local university. Participants ranged in age frofht@ 35 years
and averaged 25 years. All were familiar with moeasd-
windows applications (i.e., more than 8 hours peeky and all
used word processing applications regularly (atléshour/week).

5.2 Apparatus

A custom system was built in Tcl/Tk for the expesimh The
system presented either a listbox or a ListMap fodhpted users
to select sequences of items in different experteleconditions.
The study was conducted on a P4 Windows system with
standard optical mouse (including a mouse wheel)aah024x768
display.

5.3 Interfaces used in the study

Two versions of both the listbox and the ListMaprevased, one
with a recency cache, and one without. The bagisioe of the

listbox displayed an alphabetical list of itemspwh in 12-point

Arial (see Figure 3). The user could navigate isteih four ways:

by clicking the up and down arrow buttons on theollzar; by

dragging the scroll thumb; by clicking in the trébugbove or
below the scroll thumb; and by using the scroll elhen the

mouse. We did not include keyboard bindings becausay

situations (e.g., pen-based computers) do not akewboard

input. The recency-cache version of the listboxeada split-menu
of items to the top of the list, duplicating itertteat had been
recently selected. The recency set could hold attren items.
Each new selection copied the item to the top efdplit-menu,

moving all others down by one position, and causirggremoval

of the 18" item from the recency cache. The items in therege
cache were displayed in blue with less indentdti@m others (see
Figure 3) to clearly set them apart from regulstritems.

increase visual

labels do not completely The basic version of the ListMap worked as desdrikarlier:

items were arranged alphabetically in rows, rangainted with

one of five colours (pilot studies showed that trendom

colouring helped people to remember locations), andotated
with the first few letters of the item’s name ($&gure 3). The full
name of the item under the mouse cursor was showanfloating

box beside the cursor, and the item currently utitercursor was
highlighted with a white border. The only differenbetween the
recency-based ListMap and the basic version was ithahe

recency version, the last ten items selected wigtdighted with a
white border (see Figure 3).

In all versions of both interfaces, the size of thgplay window
was 255 x 280 pixels, which is also the size offtir@ menu of
MSWord, as seen in Figure 1.
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Figure 3. Listbox (above) and ListMap (below), both
showing recency cache. Cue for next selection isostin
above each interface (“Rockwell Condensed”).

5.4 Tasks, Experimental Conditions and

Dataset

The study used a set of 220 font names as theitdata for both
interfaces. This dataset is directly taken froneal-world task —
selecting font names from a listbox in a word peseg program.
The list was taken from the set of fonts includethva standard
distribution of Microsoft Office. Each selectionialr was cued
within the user interface by showing the name ef tiext target
font below the window title-bar (see Figure 3).

The tasks with each interface were administerediacks of ten
trials, with six blocks for each of three experita@rconditions.
Each condition is designed to compare how wellligtbox and
ListMap interfaces support a particular style démction:

¢ Random selectionThis condition was administered without
the recency-cache features of the listbox or LigiMa
interfaces. It was designed to provide baselineieslfor
selecting items that the user does not use onw@darebasis
(i.e., no revisitation). Target items were chosandomly
from the full set of 220 font names.

¢ Revisitation This condition was administered without the
recency-cache features of the listbox or ListMapriiaces. It
was designed to examine whether, and how quicklg, t
participants’ performance improves on repeatedati@ns
with both interfaces in the absence of explicit erexy
support. In this condition, the participants repdat selected
items from a working set of ten items. Each ofsheblocks
contained one trial for each item, but in a randwoder.




¢ Reuvisitation+recency In this condition, the recency-cache
features of the listbox and ListMap interfaces wenabled.
It is designed to compare the effectiveness of rdeency
features across the two interface types. This ¢mmdalso
used a more realistic notion of revisitation thahme t

revisitationcondition by adding some non-revisited elements.

For each item presented to the user, there wa®%ncBance
that the item would be drawn from the working sétem
fonts (the same ten used above), and a 20% chbatehe
item would be chosen randomly. Therefore, there wams
80% chance that the target would be in the receache
(i.e., in the recency list for the listbox, or hiigited in white
for the ListMap). This manipulation of revisitation
probability is intended to provide insights into ether
‘noisy’ tasks (outside the routine set) interferéthwthe
benefits of the recency cache with either interface

5.5 Procedure

Participants were first introduced to the two diiet list
interfaces, but populated with a different datadet the
experimental conditions. People carried out terctma trials with
each interface. They were then introduced to thdyssystem and
font dataset, and were randomly put into one of onaer groups
(listbox first or ListMap first).

Completing each trial within a block caused thetriemt target to
be immediately displayed in the title bar. Softwardomatically
logged task completion time and all item selectionsluding

incorrect selections. Incorrect selections had ffece on the
interface state (the same target remained displaged the task
time continued to accumulate regardless of errors.

All of the participants completed all of the blockdgth one
interface before proceeding to the other. With eatérface, the
six blocks within each of the three experimentatdibons were
always completed in the ordemandom-selection revisitation

revisitation+recency.

After completing the six blocks of ten trials witleach

interface/condition combination, the participamtsnpleted a short
preference questionnaire; the questionnaire was gilen at the
end of the study to capture overall preferences.

5.6 Study Design

Data from each of the three conditions are sefdgratealysed in
2x6 repeated-measures designs for fadterface-type(listbox
or ListMap) andblock-numberfirst to sixth block). The primary
dependent measure in all analyses is task timee (toncorrect
answer). Error data and questionnaire responseslsveanalyzed
and reported.

6. RESULTS

We organize the results below by the three experiahe
conditions: random selection, revisitation and setion+recency.
Across all 4320 trials (12 participants, 60 trigdsconditions, 2
interfaces) the tasks were completed quickly (di/en@an 4.9s,
sd 1.9), with few errors (< 6%).

6.1 Random selection

The ListMap interface was 20% slower than the dstinterface

in random tasks (R=12.4, p<.01), with means of 6.6s (sd 2.3)
and 5.3s (sd 1.4). There was a reliable main eftactrial block
(Fs55=7.7, p<.01), with task times reducing across fh& find
second blocks, but relatively stable performancerdafter (see
Figure 4).

There was no interfacexblock interaction s {1, p=.4),
suggesting that neither interface provided a markegerience-
based advantage over the other with randomly ssldargets.
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Figure 4. Mean completion times by trial block, rardom-
selection task. Error bars show standard error.

6.2 Revisitation

The ListMap interface provided a significant penfi@ance
advantage over the listbox interface in the resiih condition
(F1,1/9.9, p<.01), with means task times of 3.8s (sd fodthe
ListMap, and 4.6s (sd 1.3) for the listbox. Thipnesents a 17%
improvement. There was also a significant main oefief trial
block (Rss=7.7, p<.01), with more gradual mean time
improvement through blocks one to four than obsgrire the
random selection condition (see Figure 5).

Unlike the random condition, there was a significan
interfacexblock interaction {Es=2.8, p<.05). The interaction,
apparent in Figure 5, is explained by the steepwt more
continual performance improvement across blockswisng the
ListMap interface. Across the six blocks, mean @eriance with
listboxes improved by only 0.28s (6%), compared..it¥s (35%)
with ListMaps.
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Figure 5. Mean completion times for revisitation tak. Power-
law regression line of best fit is overlaid.

We analysed the fit of the data to the power laraftice [15], a
robust model of human skill acquisition. It statiest performance
time improves across trials according to the folfayvformula:

log(T,) =C -alog(n) . whereT, is the time to complete trial
n, C is the time on the first trial, and is the steepness of the



learning curve. Regression analysis of performamwress blocks
with ListMaps shows an almost perfect fit with thewer law of
practice formula, withR?=.96, p<.05, andx=3.58. The listbox
data, however, poorly fits the model, wit=.44, p=.11 (Figure
5). This suggests that listboxes poorly suppoditi@al models
of skill acquisition.

6.3 Revisitation+Recency

To recap, trials in the revisitation+recency coiodit were

generated with an 80% probability of being withire trevisitation

set and a 20% probability of being randomly sekbche addition,

the revisitation set was the same as that usdukeiprevious task,
to simulate a situation where the user knows a mumlf items

well. This section examines overall performancéhis condition;

the next section examines the effectiveness ofréhency-cache
facilities, which were only present in this conaliti

Mean performance with ListMaps (mean 4.1s, sd Was

approximately 18% faster than listboxes (5.0s, €J, Diving a

significant main effect for interface: ;5=9.8, p<.05. The
performance advantage of the ListMap over the distl§0.9

seconds) is approximately equal to that in the iptesstask (0.8
seconds); this means that a small amount of randssnin the
items to be retrieved does not disrupt the overdlantage of the
ListMap.

There was less of a performance improvement adriadlocks

than in the previous task, likely because partitipavere already
familiar with the revisitation set. There was also significant

interfacexblock interaction £Bs=0.3, p<.9). The slower
performance in the first block may be due to thet fhat the
participants also had to get used to the new rgebased
interface during these trials; after this block, rfpemance

improved only marginally. Figure 7 shows that perfance

continues roughly on the line established in thasitation task (if

we ignore block one).

We also looked at whether the origin of the itervigited or
random) affected performance in similar ways td fband in the
first two tasks. In a post-hoc analysis, there \aasignificant
interfacexorigin interaction: j7=26.2, p<.01. The interaction is
apparent in the cross-over effect (Figure 6), cause listboxes
outperforming ListMaps with random targets, and itheerse for
revisited ones.
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Figure 6. Crossover between random and revisitedeéms for
the revisitation+recency task. ‘Random’ means itemghat
were not in the cache during the R+R task; ‘Revisitmeans
items that were already in the cache.

6.4 Effectiveness of the recency caches

The recency cache facilities were only present ime t
revisitation+recency condition. To investigate #ffectiveness of
the cache facilities in the listbox and ListMapeiriaces, we re-
analysed the data from the revisitation conditiogether with the
data from the revisitation trials in the revisitatirecency
condition. The analysis used a 2x2x6 design faofaénterface-
type (listbox or ListMap),caching(absent in revisitation, present
in revisitation+recency), arldlock

As expected from the prior analyses, there wagmifiant main
effect for interface type (R=23.7, p<.01), with ListMaps (3.5s,
sd 1.3) outperforming listboxes (4.6s, sd 1.2) ewisited data.
There was a marginal main effect for caching,(#4.2, p=0.065),
with a no-caching mean of 4.2s (sd 1.4) versusiogcB.8s (sd
1.3). Performance across blocks improved signifigafs s5=5.1,
p<.01.

There was a significant cachingxblock interactidf 56=3.6,
p<.01), which is probably caused by relatively kgierformance
across blocks with ListMaps compared to variablefgpmance
with listboxes (see Figure 7).

We predicted an interfacexcaching interaction, bseawe
believed that the ListMap’s static highlighting odcent items
would help users more than the listbox's adaptiemtents.
However, this prediction was not supported by thgadwith no
significant interaction: F;,=1.6, p=0.2
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Figure 7. Mean completion times for revisited item®nly, for
both revisitation task and revisitation+recency tak.

6.5 Errors

Errors were measured as the total number of incogelections
per block divided by the number of targets per kidthe overall
error rate was low (mean 0.04, sd 0.09), rangiamfeero to 0.6.

Analysing errors in each of the three conditionan@om,
revisitation, and revisitation+recency) using 2xBl@VAs for
interface-typeand block showed no significant main effects or
interactions. Figure 8 summarizes error rates actbe three
conditions for both interface types. Although nagngicant
(F117=4.2, p=0.07), the error rate for ListMaps whenhescare
present was more than double that of the listbterface. Despite
this high error rate, participants completed ttseilections faster
with the ListMaps, suggesting that the ListMap rexyecache may
have promoted hasty commitment to selections. Dleisaviour
may have arisen because participants knew thae tves little
cost for guessing incorrectly. Further study o$ttdsult is needed,
since in the real world the cost of an error cdoddhigher (e.g.,
reposting a dialog).
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6.6 Preferences

After each condition, we asked participants toestahich of the
two interfaces they thought was easier to use, wttiey thought
was faster, and which they preferred overall. A®xshin Table 1,
preference was strongly in favour of the listboteathe random
condition: only one person preferred the ListMapd anly two
thought that it was the faster interface. After tRevisitation
condition, half of the participants thought thag thistMap was
faster, but still only three preferred it overalhfter the
revisitation+ recency condition, a majority thougjine listbox was
faster, although people still thought that theblist was easier, and
preferred it overall.

Table 1: Answers to preference questions for all eaitions
(note that some answers do not sum to 12 becausengo
participants did not answer all questions).

listbox ListMap p
Random Easier 10 1 5.8 <.05
Faster 9 2 3.3 0.07
Preferred 11 1 6.8 <.01
Reuvisitation Easier 9 3 2.1 0.15
Faster 6 6 0 1.0
Preferred 9 3 2.1 0.15
Revisitation Easier 8 4 0.8 0.39
+Recency Faster 5 7 0.08 0.77
Preferred 8 4 0.8 0.39

At the end of the session, we also asked partitspahether they
would choose to use a ListMap if the widget werailable in the
real applications that they used on a regular b&sisn though the
ListMap was not people’s preferred interface durthg tasks,
nine of the twelve participants stated that theyulouse the
ListMap in a real-world application.

7. DISCUSSION

We draw several main conclusions from the userystud

«  For random selection, listboxes outperform ListMaps

. However, real world selection is seldom random, am@&n
users revisit items, ListMaps outperform listboxes;

* Reuvisitation performance with ListMaps fits modelsskill
acquisition extremely well, but listboxes do nosuggesting
that listboxes trap users in ‘beginner mode’;

* Recency caches appear to have little effect withdixes.
This supports prior work indicating that adaptiyditsmenus
do not aid menu selections [7]. With ListMaps, hoar the

recency cache appears to assist revisitation, wthpossibly
at the cost of higher errors;

¢ The speed advantage of the ListMap becomes appaitent
participants had revisited items once or twice;

« Users preferred the listbox, although by the laskt a
majority felt that they were faster with the ListMa

In the next sections, we deal with several issw@ésed by the
study and by our experiences with the ListMap. Vdasader
reasons for the performance differences betweenigtsap and
the listbox, we address several issues in the desid use of the
technique, and we look at ways to address the laptM poor
preference scores.

7.1 Why was the listbox faster for random

retrieval?

The listbox had three advantages in the randonttsefe
condition. First, participants were far more expeced with
listboxes than they were with ListMaps, and theyrevall
extremely well-practiced at finding items using thraditional
method. Second, the ListMap provides less visuahrcse
information than does the listbox — that is, onyee or four
letters of the font's name were visible in the meptangle. As a
result, it is more difficult to visually pick outgarticular item, and
users often had to carry out a horizontal scan With mouse,
watching the pop-up text to find the correct item.

Finally, the two-dimensional alphabetic arrangemaeit the

ListMap appeared to be more difficult for unknowens than the
one-dimensional arrangement of the listbox. Onva decasions,
we observed participants going the wrong direction the

ListMap; one participant also stated that they fbuh more

difficult to search for things in rows comparedlémking in the

vertical list.

7.2 Why was the ListMap faster for

revisitation?

It seems clear that the speed advantage of thelastomes from
the better support for spatial memory that existsthe map
representation. As items are revisited, peoplet staremember
where they are, and it becomes easier to get loattlen in future.
Although a certain amount of spatial memory cowddubed in the
listbox (by remembering the location of the sctblimb), the cue
is much less specific than it was in the ListMap.

Several participants stated that by the end ofsthdy, they had
memorized the locations of many of the items inwheking set.
They stated that some items were easier to remetiaerothers:
for example, ‘Arial Black’ was easier since it wiasthe top row
of items; ‘Goudy Stout’ was more difficult since wtas in the
middle.

The advantages of using spatial memory as the cgceache
become clear in situations where an item is no dorig the
widget’'s recency set. In the ListMap, even whemgeare no
longer highlighted, people remember roughly whéreytare —
that is, people use the highlight primarily to nefitheir targeting
action, and they are likely to be close (based patial memory)
regardless of the highlight. In contrast, whentamimoves out of
the listbox’s cache, the recency support simplisfaghere is no
way to be ‘close’ if the item is not in the suhliahd a whole new
search is required.

These principles mean that there is a natural letiva in the
ListMap between amount of use and retrieval peréorce — a
desirable state in any interface. Items that ared usften get



remembered better, and so become easier to findfaster to
retrieve. The persistence of spatial memory (asvehuy [4]) also
suggests that the ‘timeout’ period for spatial mgmis much
longer than the periods used in interface-baseshmccaches.

A final issue here involves the amount of revigiatthat is
needed before a ListMap will be more effective tlafistbox.
Based on the data of the revisitation+recency taskrossover
point can be estimated; if roughly 50% or morets# selections
are revisits, a ListMap should be the better displashould be
noted, however, that selections in the real wortd &arely
random: if not from a frequently-used working gbey are often
from a ‘familiar’ set [14], which should improve ghoverall
performance of the ListMap.

7.3 Questions about ListMap Design and Use
What if two applications use different ListMaps flonts?

The underlying principles of the ListMap are thktitams should
be visible, and that items should not move. Theeefany change
to the list data or to the arrangement of the mapld have
negative effects on performance with a ListMap. héligh
undesirable, people can learn multiple mappings tfer same
information — for example two different keyboards; two
different key-bindings for cut-copy-paste. The peohs are that
learning a second mapping is difficult after yoreatly know one,
and that even once the two mappings are both ealhed, people
will make mode errors when they forget which magggcurrent.
We believe that the best way to deal with this ds have
standardized ListMaps for common lists (like fontkat are
available at the widget level, ensuring that thesnare consistent
across applications.

What if you use a computer with a different sdonfs?

Spatial knowledge from one ListMap will rarely teder to a
different map of the same data type. However, ttegee many
examples of specializations that improve performadioc the local
user but that are not transferable to other systBmsxample, the
way that one person organizes their menus, toqlbdesktop
icons, or system preferences often means that #reyless
effective at someone else’s workstation. Nevertglethese
specializations are valuable, since the majoritymaist people’s
work is done on a single computer that they calortdo their
personal context. If ListMaps can save a secondnore from
every list selection, and save the frustration efliohg with
listboxes, many users will be willing to accept tiearowness of
the solution.

What if you add a new font to your system?

The third type of change that can happen to a lagtMhvolves
gradual additions over time. We plan to test thfeot of small
changes on ListMap retrieval time, but we belidvat {people will
be able to adapt quickly. It is also possible tsigie the map to be
more resilient to change: for example, leaving @otumn of
blank rectangles as ‘expansion slots’ would allewesal items to
be added without the need to shift any items tathe row.

What if you want to see the actual appearanceefdhts?

The space-filling representation of the ListMap slowt leave
enough room to show details such as the appeamaefont.
Although it would be simple to use the actual fonthe pop-up
box, ListMaps are not designed for browsing.

How many ListMaps can people learn?

Our informal tests suggest that people can leaustmore than
one ListMap, and some test users have successiegisned
working sets in three different maps in about owerh These
intensive trials are very unlike the longer-ternd dess-frequent

use that characterizes real-world interaction Wghdata, and so
further study is needed on this question. Howetrer,range and
persistence of spatial memory in everyday life sstgthat people
will be able to learn multiple maps over time.

What about keyboard selection from lists?

Some lists let users type a key to step throughitémes starting
with that letter. We did not include this capalilin our study,
since we are interested in situations where thenmoi keyboard,
such as pen-based systems, or situations wherestre works
primarily with the mouse. Nevertheless, keyboarguindoes
provide an alternate list-selection mechanism tmlkeg the
listbox, and it allows a shortcut to a particulagion of the list.
We believe that keyboard bindings would benefit tietMap as
much as they would the listbox — that is, it woblel possible to
add this functionality to the ListMap using a ‘cemt selection’
highlight on the map to give feedback as the utsaped through
items starting with a particular letter.

How will ListMaps scale to larger sets of items?

The graphical layout of a ListMap, and the requigainthat all
items are visible at the same time, limits the nemdf items that
can be shown. In contrast, a listbox can show amyler of items
in a fixed area; this means that for very largeasets, ListMaps
cannot be used effectively. However, most list sketiein common
applications are at most hundreds of items, rattem thousands,
and ListMaps will be able to accommodate many e$¢hsets. For
example, a ListMap with items similar to those ugedur study
(14x22 pixels) could show a thousand items in ax4@0 pixel
area. The difficulties of finding random items inck a large
array, however, would severely limit the usefulne$ssuch a
display, and we believe that there are better vedysupporting
selection of both random and revisited items, asrileed below.

7.4 Combining the best of listboxes and
ListMaps

There were clear differences between the interféoeslifferent
revisitation patterns: the listbox was superior mifiading things
for the first time, and the ListMap was better fnding
frequently-used items.

To capture the best of both interfaces, there everal ways that
listboxes and ListMaps could be combined. The fitsategy is to
allow users to switch back and forth between the twdgets.

Listboxes currently do not map the right mouse dwytta dual
widget would let users switch from ListMap to listb with a

single right click. Users could therefore choose ititerface that
they wanted for the particular task at hand. Ineorty help build
the spatial map of revisited items, the combinedget could
switch back to the ListMap after a listbox seleatiand highlight
the item that was chosen. This dual representatanid allow

people to gradually switch from the general-butitéad listbox, to

the higher-performance ListMap.

A second combination approach recognizes thatahefsevisited
items is generally small, and that the spatial athge of the
ListMap is really only seen for this revisitatioats Therefore, a
combined widget could present a spatially-organideatmap’
beside the normal listbox (see Figure 9). Freqyarged items
could be placed in the hotmap (either by the sysieby the user)
and retrieved based on their unchanging spatiatipesin Figure
9, ten hotmap items have been added (out of algesal); the
hotmap items are positioned in the map to correderclosely as
possible to their location in the list, and cliaion a hotmap item
is equivalent to selecting the item from the list.
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Figure 9. Listbox with ListMap-style hotlist at rig ht.

8. Conclusion

Selection from lists is a frequent task in mostrusterfaces, and
the most common mechanism for this task is thellsaydistbox.
Although listboxes are general, they do not alloeogle to
capitalize on revisitation, and they limit the ambuthat
performance can improve. We introduced and evaluaia
alternate interface for list selection — the LisfMathat lets people
use spatial memory to improve performance with éased
experience. A user study showed that ListMaps afigmificantly
faster retrieval when users revisit items, and wénste that
ListMaps will be faster overall when fifty perceat more of a
user’s selections are revisits.

In future, we plan to carry out further studiestioé ListMap and
the idea of spatial organization. As mentioned abaove will test
people’s ability to learn and use multiple mapg] anill examine
the effects of gradual change to the list data. plé@ to extend
ListMaps for use on space-constrained devices siscimobile
phones and PDAs, and we will also explore the idkeapatial
shortcuts in other forms such as the widget in fédu Finally, we
will test the composite listbox/ListMap widgets & realistic
interface setting, and track people’s usage patérna longer-
term task setting.
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