
 1

Improving List Revisitation With ListMaps
Carl Gutwin

Computer Science Dept., University of Saskatchewan
Saskatoon, Saskatchewan, Canada

+1 306 966-8646
gutwin@cs.usask.ca

Andy Cockburn
Computer Science Dept., University of Canterbury

Christchurch, New Zealand
+64 3 364 2987

andy@cosc.canterbury.ac.nz

ABSTRACT
Selecting items from lists is a common task in many applications.
Alphabetically-sorted listboxes are the most common interface
widget used to accomplish this selection, but although general
they can be slow and frustrating to use, particularly when the lists
are long. In addition, when the user regularly revisits a small set of
items, listboxes provide little support for increased performance
through experience. To address these shortcomings, we developed
a new list selection device called a ListMap, which organizes list
items into a space-filling array of buttons. Items never move in a
ListMap, which allows people to make use of spatial memory to
find common items more quickly. We carried out a study to
compare selection of font names from a set of 220 fonts using both
ListMaps and standard listboxes. We found that although listboxes
are faster for unknown items, revisitation leads to significant
performance gains for the ListMap.

1.1 Categories and Subject Descriptors
H5.2 [Information Interfaces and Presentation]: User
Interfaces - Interaction styles.

1.2 General Terms
Performance, Design, Experimentation, Human Factors.

1.3 Keywords
List selection, listboxes, ListMaps, revisitation.

2. INTRODUCTION
Selecting items from lists is a common task in current interactive
systems, and the most common way to make the selection is
through a scrolling list box. For example, people use listboxes to
select currencies, languages, font names, or functions from a
variety of programs (see Figure 1). Selecting an item from a
listbox involves using the scrollbar to perform an alphabetic
search until the desired item is visible, and then clicking the item
with the mouse.

Although listboxes are general, and will work in almost any task
situation, they are not always optimal. One task that listboxes
support poorly is selection of items that are well known. In many
cases, people use only a small set of items from the list – for
example, people normally use a small set of fonts, and select only
a few countries or languages out of the possible alternatives.

In these situations, using listboxes can be frustrating. Their
alphabetical arrangement makes it equally difficult to find any
item in the list, irrespective of the user’s dominant interest in a
small set of recurring items. Even though the user knows exactly
what they want to find, and they have found it many times before,
they must scroll through the items in a similar manner to their first
search. Although this approach is robust and can be used reliably
in any situation where items have textual labels, it requires
cognitive effort and focused attention. A listbox provides few
opportunities for users to become experts – in particular,
alphabetical lists poorly support using memory and pattern
recognition as aids to task completion.

Some listboxes provide a shortcut to recently used items by adding
a sub-list, which we term a ‘recency cache’, to the list (see Figure
1, right). This can help, but in cases where the desired item is no
longer in the cache, the user is forced to carry out two searches
instead of one. Prior research has shown that adaptive split-menus
such as these offer limited performance improvements [7].

In this paper we present and evaluate the ListMap – a new way to
interact with list data that allows people to use spatial memory to
speed up the selection of previously-seen items. ListMaps
organize items into a space-filling array of buttons, with all items
visible at once in static locations (see Figure 2). We compared
ListMaps and listboxes in a user study where participants were
asked to select fonts from a set of 220 names.

Figure 1. Listboxes for selection of currencies (top), languages
(left), and fonts (right, with recency cache).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AVI '06, May 23-26, 2006, Venezia, Italy.
Copyright 2006 ACM 1-59593-353-0/06/0005...$5.00..

Figure 2. A ListMap showing 220 font names.

3. RELATED WORK
3.1 Location Memory in Interactive Systems
Spatial object location memory is knowledge of where things are
located in a space [8,16]. Spatial knowledge in two-dimensional
spaces is built up primarily through interaction; that is, people
remember locations after having had experience with that location
[5]. People may remember particular items based on landmarks in
the space, or with more experience, may be able to maintain a
more complete ‘mental map’ in which they can remember and find
many different objects very quickly [8,17].

For example, Robertson and colleagues tested a spatial memory
technique (the Data Mountain) in which people placed thumbnails
of web pages on a simulated inclined plane [4,17]. Once 100 pages
were placed, participants carried out a number of find-and-select
retrieval tasks. The study found that retrieval was significantly
faster with the spatial technique than with a standard bookmarking
system. In addition, the memory of where items were placed
persisted over a long time: participants who returned six months
later were able to retrieve items at the same level of performance,
with only brief retraining [4].

The items in these studies contained symbolic information
(thumbnails, colours, icons and names) as well as spatial position.
An early study by Jones and Dumais [11] showed that spatial
memory fares less well when location is the sole cue to retrieval.
In their experiments, retrieval of items that were only identified by
location was slower and less accurate than when items were
represented by name. There is also evidence that location learning
is dependent on the amount of effort used when interacting with
objects [6].

3.2 Selecting from lists
List selection has been extensively researched, particularly in the
form of menu selection. Sears and Shneiderman [18] described
‘split menus’ for enabling faster selection of frequently accessed
menu items. The technique grouped a set of pre-determined menu
items ‘above the split’ at the top of the menu, reducing the target
acquisition distance. Their evaluations showed that static split
menus, in which the frequent items do not adapt to user actions,
allow faster selections than traditional menus. They also suggested

further work on split menus that adapt to the user’s menu selection
patterns. Findlater and McGrenere [7] implemented and evaluated
these suggestions, comparing split-menu performance across
static, adaptive and adaptable variants. Their results showed that
static split-menus are reliably faster than adaptive ones, and that
adaptable split-menus are faster than adaptive ones when users are
guided by examples.

Finally, scrolling has also been studied in detail, both in the
context of lists and in larger text documents. Although scrolling is
common, it has been found to have two main problems: it causes
motion blur at high scroll speeds, and it causes problems for
spatial memory [3,21]. A variety of techniques have been
introduced to address the movement issues (e.g., [3]), and work
has also looked at better ways of supporting spatial memory (e.g.,
[13]) in scrollbars.

3.3 Revisitation and Recency Caching
Learning spatial locations is a function of experience with the
items in the data space [5,6]. Therefore, the degree to which a user
will be able to build a mental map is related to the amount of
revisitation in the task. Different situations have different
revisitation patterns, but in many information tasks, users
repeatedly go back to a small set of items.

One type of revisitation is brought about by using only a limited
set of items. For example, McGrenere [14] found in a survey of
Microsoft Word users that people use only a small number of the
available commands on a regular basis (a mean of 40 out of 265).
Other revisitation arises through recency – in many tasks, a
recently-used item is much more likely to be used in the near
future than a randomly-chosen item. For example, repetitive
patterns of use have been shown in operating system commands
[9], and in navigation on the WWW: Tauscher and Greenberg [22]
found that more than half of pages seen were revisits, and that
revisitation occurs mainly to the last few pages visited – the last
ten pages seen cover about 85% of revisits.

Revisitation can be supported with structures like split menus, as
described above, or by visualizations of interaction history. Hill et
al.’s idea of ‘read wear’ adds graphical information to
computational objects to indicate the history of their use [10].
Depending on how the history is gathered and displayed, the
visible marks can be used to determine which items have been
visited more recently. A study of ‘visit wear’ (read wear to
indicate which items have been visited) showed that visual
recency information can improve revisitation in distorted spaces
where memorability is difficult [20].

4. LISTMAPS: SPATIAL LAYOUT OF
LIST DATA

A ListMap takes the items in a list and lays them out in a space-
filling two-dimensional grid, ordered alphabetically by row (see
Figure 2). Items are sized such that they all fit into the window,
ensuring that they will all be visible and that no scrolling will be
required. Clicking on an item’s rectangle in the ListMap is
equivalent to clicking the item in a listbox. The idea is therefore
similar to the tool palettes used in graphics applications, although
ListMaps do not use icons to represent items.

From this basic layout, several additional features are possible to
improve selection and search.
• Labels. As much of the item’s label as possible is written into

the rectangle. The letters on each label give a reasonable
indication of the item’s name (Figure 2).

 3

• Tooltips. Since the partial labels do not completely
differentiate some items, the full name is shown in a tag that
follows the user’s mouse cursor (see Figure 2).

• Selection highlight. The border outline of the currently
selected item is highlighted.

• Colouring. Items can be coloured to increase visual
differentiation in the set. Each item in the ListMap is
randomly assigned one of five colours, but colour could also
represent other item attributes.

• Marking. Items can also be visually marked to indicate
attributes such as recent selection (i.e. the recency cache used
in the study below, shown in Figure 3), frequency of
selection, or user-chosen bookmarks.

The main design principles in a ListMap are that all items are
always visible, and that they do not move. This allows users to
gradually change from using alphabetic search to spatial memory
as their primary search strategy for frequently-used items. The
spatial organization is intended to solve the problem described
earlier: listboxes require approximately equal search effort
regardless of revisitation, but retrieving an item in a ListMap
should become easier and faster with repeated retrieval as spatial
memory improves. This theoretical advantage is tested in the
experiments described below.

5. COMPARISON STUDY: LISTBOXES
AND LISTMAPS

To evaluate the idea of organizing list items spatially, we carried
out a study in which we compared retrieval performance with
standard listboxes and ListMaps.

5.1 Participants
Twelve participants (7 women and 5 men) were recruited from a
local university. Participants ranged in age from 20 to 35 years
and averaged 25 years. All were familiar with mouse-and-
windows applications (i.e., more than 8 hours per week) and all
used word processing applications regularly (at least 1 hour/week).

5.2 Apparatus
A custom system was built in Tcl/Tk for the experiment. The
system presented either a listbox or a ListMap and prompted users
to select sequences of items in different experimental conditions.
The study was conducted on a P4 Windows system with a
standard optical mouse (including a mouse wheel) and a 1024x768
display.

5.3 Interfaces used in the study
Two versions of both the listbox and the ListMap were used, one
with a recency cache, and one without. The basic version of the
listbox displayed an alphabetical list of items, shown in 12-point
Arial (see Figure 3). The user could navigate the list in four ways:
by clicking the up and down arrow buttons on the scrollbar; by
dragging the scroll thumb; by clicking in the trough above or
below the scroll thumb; and by using the scroll wheel on the
mouse. We did not include keyboard bindings because many
situations (e.g., pen-based computers) do not allow keyboard
input. The recency-cache version of the listbox added a split-menu
of items to the top of the list, duplicating items that had been
recently selected. The recency set could hold at most ten items.
Each new selection copied the item to the top of the split-menu,
moving all others down by one position, and causing the removal
of the 10th item from the recency cache. The items in the recency
cache were displayed in blue with less indentation than others (see
Figure 3) to clearly set them apart from regular list items.

The basic version of the ListMap worked as described earlier:
items were arranged alphabetically in rows, randomly tinted with
one of five colours (pilot studies showed that the random
colouring helped people to remember locations), and annotated
with the first few letters of the item’s name (see Figure 3). The full
name of the item under the mouse cursor was shown in a floating
box beside the cursor, and the item currently under the cursor was
highlighted with a white border. The only difference between the
recency-based ListMap and the basic version was that in the
recency version, the last ten items selected were highlighted with a
white border (see Figure 3).

In all versions of both interfaces, the size of the display window
was 255 x 280 pixels, which is also the size of the font menu of
MSWord, as seen in Figure 1.

Figure 3. Listbox (above) and ListMap (below), both
showing recency cache. Cue for next selection is shown

above each interface (“Rockwell Condensed”).

5.4 Tasks, Experimental Conditions and
Dataset

The study used a set of 220 font names as the data items for both
interfaces. This dataset is directly taken from a real-world task –
selecting font names from a listbox in a word processing program.
The list was taken from the set of fonts included with a standard
distribution of Microsoft Office. Each selection trial was cued
within the user interface by showing the name of the next target
font below the window title-bar (see Figure 3).

The tasks with each interface were administered in blocks of ten
trials, with six blocks for each of three experimental conditions.
Each condition is designed to compare how well the listbox and
ListMap interfaces support a particular style of interaction:

• Random selection. This condition was administered without
the recency-cache features of the listbox or ListMap
interfaces. It was designed to provide baseline values for
selecting items that the user does not use on a regular basis
(i.e., no revisitation). Target items were chosen randomly
from the full set of 220 font names.

• Revisitation. This condition was administered without the
recency-cache features of the listbox or ListMap interfaces. It
was designed to examine whether, and how quickly, the
participants’ performance improves on repeated iterations
with both interfaces in the absence of explicit recency
support. In this condition, the participants repeatedly selected
items from a working set of ten items. Each of the six blocks
contained one trial for each item, but in a random order.

• Revisitation+recency. In this condition, the recency-cache
features of the listbox and ListMap interfaces were enabled.
It is designed to compare the effectiveness of the recency
features across the two interface types. This condition also
used a more realistic notion of revisitation than the
revisitation condition by adding some non-revisited elements.
For each item presented to the user, there was an 80% chance
that the item would be drawn from the working set of ten
fonts (the same ten used above), and a 20% chance that the
item would be chosen randomly. Therefore, there was an
80% chance that the target would be in the recency cache
(i.e., in the recency list for the listbox, or highlighted in white
for the ListMap). This manipulation of revisitation
probability is intended to provide insights into whether
‘noisy’ tasks (outside the routine set) interfere with the
benefits of the recency cache with either interface.

5.5 Procedure
Participants were first introduced to the two different list
interfaces, but populated with a different dataset to the
experimental conditions. People carried out ten practice trials with
each interface. They were then introduced to the study system and
font dataset, and were randomly put into one of two order groups
(listbox first or ListMap first).

Completing each trial within a block caused the next font target to
be immediately displayed in the title bar. Software automatically
logged task completion time and all item selections, including
incorrect selections. Incorrect selections had no effect on the
interface state (the same target remained displayed), and the task
time continued to accumulate regardless of errors.

All of the participants completed all of the blocks with one
interface before proceeding to the other. With each interface, the
six blocks within each of the three experimental conditions were
always completed in the order random-selection, revisitation,
revisitation+recency.

After completing the six blocks of ten trials with each
interface/condition combination, the participants completed a short
preference questionnaire; the questionnaire was also given at the
end of the study to capture overall preferences.

5.6 Study Design
Data from each of the three conditions are separately analysed in
2×6 repeated-measures designs for factors interface-type (listbox
or ListMap) and block-number (first to sixth block). The primary
dependent measure in all analyses is task time (time to correct
answer). Error data and questionnaire responses are also analyzed
and reported.

6. RESULTS
We organize the results below by the three experimental
conditions: random selection, revisitation and revistation+recency.
Across all 4320 trials (12 participants, 60 trials, 3 conditions, 2
interfaces) the tasks were completed quickly (overall mean 4.9s,
sd 1.9), with few errors (< 6%).

6.1 Random selection
The ListMap interface was 20% slower than the listbox interface
in random tasks (F1,11=12.4, p<.01), with means of 6.6s (sd 2.3)
and 5.3s (sd 1.4). There was a reliable main effect for trial block
(F5,55=7.7, p<.01), with task times reducing across the first and
second blocks, but relatively stable performance thereafter (see
Figure 4).

There was no interface×block interaction (F5,55<1, p=.4),
suggesting that neither interface provided a marked experience-
based advantage over the other with randomly selected targets.

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6

Trial block

M
ea

n
 t

as
k

ti
m

e
(s

ec
o

n
d

s)

listboxes

ListMap

Figure 4. Mean completion times by trial block, random-

selection task. Error bars show standard error.

6.2 Revisitation
The ListMap interface provided a significant performance
advantage over the listbox interface in the resivitation condition
(F1,11=9.9, p<.01), with means task times of 3.8s (sd 1.4) for the
ListMap, and 4.6s (sd 1.3) for the listbox. This represents a 17%
improvement. There was also a significant main effect of trial
block (F5,55=7.7, p<.01), with more gradual mean time
improvement through blocks one to four than observed in the
random selection condition (see Figure 5).

Unlike the random condition, there was a significant
interface×block interaction (F5,55=2.8, p<.05). The interaction,
apparent in Figure 5, is explained by the steeper and more
continual performance improvement across blocks when using the
ListMap interface. Across the six blocks, mean performance with
listboxes improved by only 0.28s (6%), compared to 1.74s (35%)
with ListMaps.

R2 = 0.44

R2 = 0.96

0

1

2

3

4

5

6

1 2 3 4 5 6

Trial Block

M
ea

n
 t

as
k

ti
m

e
(s

ec
o

n
d

s)

listbox

ListMap

Figure 5. Mean completion times for revisitation task. Power-

law regression line of best fit is overlaid.

We analysed the fit of the data to the power law of practice [15], a
robust model of human skill acquisition. It states that performance
time improves across trials according to the following formula:

)log()log(nCTn α−= , where Tn is the time to complete trial

n, C is the time on the first trial, and α is the steepness of the

 5

learning curve. Regression analysis of performance across blocks
with ListMaps shows an almost perfect fit with the power law of
practice formula, with R2=.96, p<.05, and α =3.58. The listbox
data, however, poorly fits the model, with R2=.44, p=.11 (Figure
5). This suggests that listboxes poorly support traditional models
of skill acquisition.

6.3 Revisitation+Recency
To recap, trials in the revisitation+recency condition were
generated with an 80% probability of being within the revisitation
set and a 20% probability of being randomly selected. In addition,
the revisitation set was the same as that used in the previous task,
to simulate a situation where the user knows a number of items
well. This section examines overall performance in this condition;
the next section examines the effectiveness of the recency-cache
facilities, which were only present in this condition.

Mean performance with ListMaps (mean 4.1s, sd 1.7) was
approximately 18% faster than listboxes (5.0s, sd 1.6), giving a
significant main effect for interface: F1,11=9.8, p<.05. The
performance advantage of the ListMap over the listbox (0.9
seconds) is approximately equal to that in the previous task (0.8
seconds); this means that a small amount of randomness in the
items to be retrieved does not disrupt the overall advantage of the
ListMap.

There was less of a performance improvement across trial blocks
than in the previous task, likely because participants were already
familiar with the revisitation set. There was also no significant
interface×block interaction (F5,55=0.3, p<.9). The slower
performance in the first block may be due to the fact that the
participants also had to get used to the new recency-based
interface during these trials; after this block, performance
improved only marginally. Figure 7 shows that performance
continues roughly on the line established in the revisitation task (if
we ignore block one).

We also looked at whether the origin of the item (revisited or
random) affected performance in similar ways to that found in the
first two tasks. In a post-hoc analysis, there was a significant
interface×origin interaction: F1,11=26.2, p<.01. The interaction is
apparent in the cross-over effect (Figure 6), caused by listboxes
outperforming ListMaps with random targets, and the inverse for
revisited ones.

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Random Revisit

M
ea

n
ta

sk
 ti

m
e

(s
ec

on
ds

)

listbox

ListMap

Figure 6. Crossover between random and revisited items for
the revisitation+recency task. ‘Random’ means items that

were not in the cache during the R+R task; ‘Revisit’ means
items that were already in the cache.

6.4 Effectiveness of the recency caches
The recency cache facilities were only present in the
revisitation+recency condition. To investigate the effectiveness of
the cache facilities in the listbox and ListMap interfaces, we re-
analysed the data from the revisitation condition together with the
data from the revisitation trials in the revisitation+recency
condition. The analysis used a 2×2×6 design for factors interface-
type (listbox or ListMap), caching (absent in revisitation, present
in revisitation+recency), and block.

As expected from the prior analyses, there was a significant main
effect for interface type (F1,11=23.7, p<.01), with ListMaps (3.5s,
sd 1.3) outperforming listboxes (4.6s, sd 1.2) on revisited data.
There was a marginal main effect for caching (F1,11=4.2, p=0.065),
with a no-caching mean of 4.2s (sd 1.4) versus caching 3.8s (sd
1.3). Performance across blocks improved significantly: F5,55=5.1,
p<.01.

There was a significant caching×block interaction (F5,55=3.6,
p<.01), which is probably caused by relatively stable performance
across blocks with ListMaps compared to variable performance
with listboxes (see Figure 7).

We predicted an interface×caching interaction, because we
believed that the ListMap’s static highlighting of recent items
would help users more than the listbox’s adaptive contents.
However, this prediction was not supported by the data, with no
significant interaction: F1,11=1.6, p=0.2

0

1

2

3

4

5

6

1 2 3 4 5 6 1 2 3 4 5 6

Revisiting without a cache Revisiting with a cache

Revisitation and Recency conditions by block

M
ea

n
 t

as
k

ti
m

e
(s

ec
o

n
d

s)

listbox

ListMap

Figure 7. Mean completion times for revisited items only, for

both revisitation task and revisitation+recency task.

6.5 Errors
Errors were measured as the total number of incorrect selections
per block divided by the number of targets per block. The overall
error rate was low (mean 0.04, sd 0.09), ranging from zero to 0.6.

Analysing errors in each of the three conditions (random,
revisitation, and revisitation+recency) using 2×6 ANOVAs for
interface-type and block showed no significant main effects or
interactions. Figure 8 summarizes error rates across the three
conditions for both interface types. Although not significant
(F1,11=4.2, p=0.07), the error rate for ListMaps when caches are
present was more than double that of the listbox interface. Despite
this high error rate, participants completed their selections faster
with the ListMaps, suggesting that the ListMap recency cache may
have promoted hasty commitment to selections. This behaviour
may have arisen because participants knew that there was little
cost for guessing incorrectly. Further study of this result is needed,
since in the real world the cost of an error could be higher (e.g.,
reposting a dialog).

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Random Revisitation Revisitation+Recency

Experimental condition

M
ea

n
 e

rr
o

r
ra

te
 p

er
 t

ri
al

listbox

ListMap

Figure 8. Mean error rates for all tasks.

6.6 Preferences
After each condition, we asked participants to state which of the
two interfaces they thought was easier to use, which they thought
was faster, and which they preferred overall. As shown in Table 1,
preference was strongly in favour of the listbox after the random
condition: only one person preferred the ListMap, and only two
thought that it was the faster interface. After the Revisitation
condition, half of the participants thought that the ListMap was
faster, but still only three preferred it overall. After the
revisitation+ recency condition, a majority thought the listbox was
faster, although people still thought that the listbox was easier, and
preferred it overall.

Table 1: Answers to preference questions for all conditions
(note that some answers do not sum to 12 because some

participants did not answer all questions).

 listbox ListMap χ 2 p
Easier 10 1 5.8 <.05
Faster 9 2 3.3 0.07

Random

Preferred 11 1 6.8 <.01
Easier 9 3 2.1 0.15
Faster 6 6 0 1.0

Revisitation

Preferred 9 3 2.1 0.15
Easier 8 4 0.8 0.39
Faster 5 7 0.08 0.77

Revisitation
+Recency

Preferred 8 4 0.8 0.39

At the end of the session, we also asked participants whether they
would choose to use a ListMap if the widget were available in the
real applications that they used on a regular basis. Even though the
ListMap was not people’s preferred interface during the tasks,
nine of the twelve participants stated that they would use the
ListMap in a real-world application.

7. DISCUSSION
We draw several main conclusions from the user study:
• For random selection, listboxes outperform ListMaps;
• However, real world selection is seldom random, and when

users revisit items, ListMaps outperform listboxes;
• Revisitation performance with ListMaps fits models of skill

acquisition extremely well, but listboxes do not – suggesting
that listboxes trap users in ‘beginner mode’;

• Recency caches appear to have little effect with listboxes.
This supports prior work indicating that adaptive split menus
do not aid menu selections [7]. With ListMaps, however, the

recency cache appears to assist revisitation, although possibly
at the cost of higher errors;

• The speed advantage of the ListMap becomes apparent after
participants had revisited items once or twice;

• Users preferred the listbox, although by the last task, a
majority felt that they were faster with the ListMap.

In the next sections, we deal with several issues raised by the
study and by our experiences with the ListMap. We consider
reasons for the performance differences between the ListMap and
the listbox, we address several issues in the design and use of the
technique, and we look at ways to address the ListMap’s poor
preference scores.

7.1 Why was the listbox faster for random
retrieval?

The listbox had three advantages in the random-selection
condition. First, participants were far more experienced with
listboxes than they were with ListMaps, and they were all
extremely well-practiced at finding items using the traditional
method. Second, the ListMap provides less visual search
information than does the listbox – that is, only three or four
letters of the font’s name were visible in the map rectangle. As a
result, it is more difficult to visually pick out a particular item, and
users often had to carry out a horizontal scan with the mouse,
watching the pop-up text to find the correct item.

Finally, the two-dimensional alphabetic arrangement of the
ListMap appeared to be more difficult for unknown items than the
one-dimensional arrangement of the listbox. On a few occasions,
we observed participants going the wrong direction in the
ListMap; one participant also stated that they found it more
difficult to search for things in rows compared to looking in the
vertical list.

7.2 Why was the ListMap faster for
revisitation?

It seems clear that the speed advantage of the ListMap comes from
the better support for spatial memory that exists in the map
representation. As items are revisited, people start to remember
where they are, and it becomes easier to get back to them in future.
Although a certain amount of spatial memory could be used in the
listbox (by remembering the location of the scroll thumb), the cue
is much less specific than it was in the ListMap.

Several participants stated that by the end of the study, they had
memorized the locations of many of the items in the working set.
They stated that some items were easier to remember than others:
for example, ‘Arial Black’ was easier since it was in the top row
of items; ‘Goudy Stout’ was more difficult since it was in the
middle.

The advantages of using spatial memory as the recency cache
become clear in situations where an item is no longer in the
widget’s recency set. In the ListMap, even when items are no
longer highlighted, people remember roughly where they are –
that is, people use the highlight primarily to refine their targeting
action, and they are likely to be close (based on spatial memory)
regardless of the highlight. In contrast, when an item moves out of
the listbox’s cache, the recency support simply fails: there is no
way to be ‘close’ if the item is not in the sublist, and a whole new
search is required.

These principles mean that there is a natural correlation in the
ListMap between amount of use and retrieval performance – a
desirable state in any interface. Items that are used often get

 7

remembered better, and so become easier to find and faster to
retrieve. The persistence of spatial memory (as shown by [4]) also
suggests that the ‘timeout’ period for spatial memory is much
longer than the periods used in interface-based recency caches.

A final issue here involves the amount of revisitation that is
needed before a ListMap will be more effective than a listbox.
Based on the data of the revisitation+recency task, a crossover
point can be estimated; if roughly 50% or more of the selections
are revisits, a ListMap should be the better display. It should be
noted, however, that selections in the real world are rarely
random: if not from a frequently-used working set, they are often
from a ‘familiar’ set [14], which should improve the overall
performance of the ListMap.

7.3 Questions about ListMap Design and Use
What if two applications use different ListMaps for fonts?
The underlying principles of the ListMap are that all items should
be visible, and that items should not move. Therefore, any change
to the list data or to the arrangement of the map could have
negative effects on performance with a ListMap. Although
undesirable, people can learn multiple mappings for the same
information — for example two different keyboards, or two
different key-bindings for cut-copy-paste. The problems are that
learning a second mapping is difficult after you already know one,
and that even once the two mappings are both well learned, people
will make mode errors when they forget which mapping is current.
We believe that the best way to deal with this is to have
standardized ListMaps for common lists (like fonts) that are
available at the widget level, ensuring that the maps are consistent
across applications.

What if you use a computer with a different set of fonts?
Spatial knowledge from one ListMap will rarely transfer to a
different map of the same data type. However, there are many
examples of specializations that improve performance for the local
user but that are not transferable to other systems: for example, the
way that one person organizes their menus, toolbars, desktop
icons, or system preferences often means that they are less
effective at someone else’s workstation. Nevertheless, these
specializations are valuable, since the majority of most people’s
work is done on a single computer that they can tailor to their
personal context. If ListMaps can save a second or more from
every list selection, and save the frustration of dealing with
listboxes, many users will be willing to accept the narrowness of
the solution.

What if you add a new font to your system?
The third type of change that can happen to a ListMap involves
gradual additions over time. We plan to test the effects of small
changes on ListMap retrieval time, but we believe that people will
be able to adapt quickly. It is also possible to design the map to be
more resilient to change: for example, leaving one column of
blank rectangles as ‘expansion slots’ would allow several items to
be added without the need to shift any items to the next row.

What if you want to see the actual appearance of the fonts?
The space-filling representation of the ListMap does not leave
enough room to show details such as the appearance of a font.
Although it would be simple to use the actual font in the pop-up
box, ListMaps are not designed for browsing.

How many ListMaps can people learn?
Our informal tests suggest that people can learn to use more than
one ListMap, and some test users have successfully learned
working sets in three different maps in about one hour. These
intensive trials are very unlike the longer-term and less-frequent

use that characterizes real-world interaction with list data, and so
further study is needed on this question. However, the range and
persistence of spatial memory in everyday life suggests that people
will be able to learn multiple maps over time.

What about keyboard selection from lists?
Some lists let users type a key to step through the items starting
with that letter. We did not include this capability in our study,
since we are interested in situations where there is no keyboard,
such as pen-based systems, or situations where the user works
primarily with the mouse. Nevertheless, keyboard input does
provide an alternate list-selection mechanism to scrolling the
listbox, and it allows a shortcut to a particular region of the list.
We believe that keyboard bindings would benefit the ListMap as
much as they would the listbox – that is, it would be possible to
add this functionality to the ListMap using a ‘current selection’
highlight on the map to give feedback as the user stepped through
items starting with a particular letter.

How will ListMaps scale to larger sets of items?

The graphical layout of a ListMap, and the requirement that all
items are visible at the same time, limits the number of items that
can be shown. In contrast, a listbox can show any number of items
in a fixed area; this means that for very large datasets, ListMaps
cannot be used effectively. However, most list datasets in common
applications are at most hundreds of items, rather than thousands,
and ListMaps will be able to accommodate many of these sets. For
example, a ListMap with items similar to those used in our study
(14x22 pixels) could show a thousand items in a 700x440 pixel
area. The difficulties of finding random items in such a large
array, however, would severely limit the usefulness of such a
display, and we believe that there are better ways of supporting
selection of both random and revisited items, as described below.

7.4 Combining the best of listboxes and
ListMaps

There were clear differences between the interfaces for different
revisitation patterns: the listbox was superior when finding things
for the first time, and the ListMap was better for finding
frequently-used items.

To capture the best of both interfaces, there are several ways that
listboxes and ListMaps could be combined. The first strategy is to
allow users to switch back and forth between the two widgets.
Listboxes currently do not map the right mouse button; a dual
widget would let users switch from ListMap to listbox with a
single right click. Users could therefore choose the interface that
they wanted for the particular task at hand. In order to help build
the spatial map of revisited items, the combined widget could
switch back to the ListMap after a listbox selection, and highlight
the item that was chosen. This dual representation could allow
people to gradually switch from the general-but-limited listbox, to
the higher-performance ListMap.

A second combination approach recognizes that the set of revisited
items is generally small, and that the spatial advantage of the
ListMap is really only seen for this revisitation set. Therefore, a
combined widget could present a spatially-organized ‘hotmap’
beside the normal listbox (see Figure 9). Frequently-used items
could be placed in the hotmap (either by the system or by the user)
and retrieved based on their unchanging spatial position. In Figure
9, ten hotmap items have been added (out of a possible 21); the
hotmap items are positioned in the map to correspond as closely as
possible to their location in the list, and clicking on a hotmap item
is equivalent to selecting the item from the list.

Figure 9. Listbox with ListMap-style hotlist at right.

8. Conclusion
Selection from lists is a frequent task in most user interfaces, and
the most common mechanism for this task is the scrolling listbox.
Although listboxes are general, they do not allow people to
capitalize on revisitation, and they limit the amount that
performance can improve. We introduced and evaluated an
alternate interface for list selection – the ListMap – that lets people
use spatial memory to improve performance with increased
experience. A user study showed that ListMaps allow significantly
faster retrieval when users revisit items, and we estimate that
ListMaps will be faster overall when fifty percent or more of a
user’s selections are revisits.

In future, we plan to carry out further studies of the ListMap and
the idea of spatial organization. As mentioned above, we will test
people’s ability to learn and use multiple maps, and will examine
the effects of gradual change to the list data. We plan to extend
ListMaps for use on space-constrained devices such as mobile
phones and PDAs, and we will also explore the idea of spatial
shortcuts in other forms such as the widget in Figure 9. Finally, we
will test the composite listbox/ListMap widgets in a realistic
interface setting, and track people’s usage patterns in a longer-
term task setting.

REFERENCES
[1] Baddeley, A. (1990) Human Memory, Hove: Lawrence

Erlbaum Associates.

[2] Bederson, B. (2000) Fisheye Menus, Proc. ACM UIST 2000,
217-225.

[3] Cockburn, A., Savage, J., and Wallace, A. (2005) Tuning and
Testing Scrolling Interfaces that Automatically Zoom, Proc.
ACM CHI 2005, 71-80.

[4] Czerwinski, M., van Dantzich, M., Robertson, G., and
Hoffman, H. (1999) The Contribution of Thumbnail Image,
Mouse-over Text and Spatial Location Memory to Web Page

Retrieval in 3D Viewing, Proc. IFIP INTERACT 1999, 163-
170.

[5] Darken, R., and Sibert, J. (1996) Wayfinding in Large-scale
Virtual Environments, Proc. ACM CHI 1996, 142-150.

[6] Ehret, B. (2002) Learning where to look: location learning in
graphical user interfaces, Proc. ACM CHI 2002, 211-218.

[7] Findlater, L., and McGrenere, J. (2004) A comparison of
static, adaptive, and adaptable menus, Proc. ACM CHI 2004,
89-96.

[8] Golledge, R., and Stimson, R. (1997) Spatial Behaviour, New
York: Guilford Press.

[9] Greenberg, S., and Witten, I. H. (1993) Supporting command
reuse: Mechanisms for reuse. IJMMS, 39(3), 353-390.

[10] Hill, W., Hollan, J. Wroblewski, D. and McCandless, T.
(1992) Edit Wear and Read Wear, Proc. CHI 1992, 3-9.

[11] Jones, W., and Dumais, S. (1986) The Spatial Metaphor for
User Interfaces: Experimental Tests of References by
Location versus Name, ACM TOIS, 4, 1986, 42-63.

[12] Lynch, K. (1960) The Image of the City. Cambridge: MIT
Press.

[13] McCrickard, S., and Catrambone, R., (1999) Beyond the
Scrollbar: An Evolution and Evaluation of Alternative
Navigation Techniques, Proc. IEEE Visual Languages 1999,
270–277.

[14] McGrenere, J., and Moore, G. (2000) Are We All in the
Same "Bloat"?, Proc. Graphics Interface 2000, 187-196.

[15] Newell, A., and Rosenbloom, P. (1981) Mechanisms of skill
acquisition and the law of practice. In J. Anderson, ed.,
Cognitive Skills and their Acquisition. Hillsdale, NJ:
Lawrence Erlbaum, 81-135.

[16] Postma, A., & De Haan, E. (1996) What Was Where?
Memory for Object Locations, Quarterly Journal of
Experimental Psychology, 49A (1), 178-199.

[17] Robertson, G., Czerwinski, M., Larson, K., Robbins, D.,
Thiel, D., and van Dantzich, M. (1998) Data Mountain:
Using Spatial Memory for Document Management, Proc.
ACM UIST 1998, 153-162.

[18] Sears, A., & Shneiderman, B. (1994) Split Menus:
Effectively Using Selection Frequency to Organize Menus.
ACM ToCHI, 1(1), 27-51.

[19] Shneiderman, B. (1992) Tree Visualization with Tree-maps:
A 2-D space-filling approach. ACM Transactions on
Graphics, 11, 1, 1992, 92-99.

[20] Skopik, A. and Gutwin, C. (2005) Improving Revisitation in
Fisheye Views with Visit Wear, Proc. ACM CHI 2005, 771-
780.

[21] Smith, R., and Taivalsaari, A. (1999) Generalized and
Stationary Scrolling, Proc. ACM UIST 1999, 1-9.

[22] Tauscher, L. and Greenberg, S. (1997) Revisitation Patterns
in World Wide Web Navigation, Proc. ACM CHI 1997, 398-
406.

