
Hidden Messages: Evaluating the Effectiveness of Code

Elision in Program Navigation

Matthew Smith and Andy Cockburn
Human-Computer Interaction Lab
Department of Computer Science
University of Canterbury
Christchurch, New Zealand
{ mjs171,andy}@ cosc. canterbury. ac. nz

October 15, 2001

Abstract. Text elision is a user interface technique that aims to improve the
efficiency of navigating through information by allowing regions of text to be ‘folded’
into and out of the display. Several researchers have argued that elision interfaces are
particularly suited to source code editing because they allow programmers to focus
on relevant code regions while suppressing the display of irrelevant information.
There is, however, a lack of empirical evidence of the technique’s effectiveness. This
paper presents an empirical evaluation of source code elision using a Java program
editor. The evaluation compares a ‘flat text’ version of this interface with two
versions that diminished elided text to levels that were ‘just legible’ and ‘illegible’
(extremely small text). Subject performance was recorded in four tasks involving
navigation through programs. Results show that programmers were able to complete
their tasks more rapidly when using the elision interfaces, particularly in larger
program files. Although the subjects indicated a strong preference for the just legible
elision interface, their performance was best with the illegible elision system.

Keywords: Text elision, source code editing, program visualisation, user interfaces,
interface evaluation, summarisation

1. Introduction

Computer programs are richly interconnected hypertextual informa-

tion spaces. To ease the task of creating and maintaining programs,

programmers use tools that allow them to rapidly navigate and cross-

reference between relevant areas of the source code. Typical facilities

provided by software development systems include marking and search-

ing facilities that ease navigation between two or more code regions,

split- and multiple-windows that allow more than one code region to

c© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

holo.tex; 29/10/2001; 15:31; p.1



2 Matthew Smith and Andy Cockburn

be viewed simultaneously, and context-sensitive editing facilities that

allow method names to be selected from object variables. Each of these

techniques helps to overcome the programmer’s problem of needing

simultaneous access to more than one region in the source code. An-

other possible solution—the subject of the evaluation presented in this

paper—is to tailor the information displayed in the window so that

only information relevant to the programmer’s task is shown.

Source code elision (also referred to as ‘holophrasting’) is a technique

that hides certain areas of text based on the structure of a program. It

allows programmers to tailor the level of abstraction at which they view

or edit code, expanding and contracting detail as appropriate. The aim

of eliding code editors is to increase the efficiency of program navigation

and to improve the quality of program visualisation by providing a

display that focuses on relevant information, without the ‘clutter’ of

information that is irrelevant to the user’s task. Eliding interfaces also

reduce the amount of window scrolling required to browse between

program regions.

Although there are several editors that support code elision, we are

unaware of any empirical evaluations of their effectiveness. The aim of

the evaluation presented in this paper is to answer the question: ‘Does

text elision allow programmers to solve realistic program navigation

tasks more efficiently?’

Section 2 describes related work on eliding text editors, and intro-

duces the ‘Jaba’ environment used in our evaluation. The experimen-

tal method is described in Section 3, with results and discussion in

Sections 4 and 5. Section 6 concludes the paper.

holo.tex; 29/10/2001; 15:31; p.2



Hidden Messages 3

Figure 1. Twenty lines of a Java class in a normal (left) and elided (right) display.

2. Related Work

Text elision is found in many everyday office information systems.

Microsoft’s Word and PowerPoint systems, for instance, support ‘out-

line’ views that allow users to view documents at tailorable levels of

abstraction, expanding and contracting sections, subsections, and so

on, as required. These facilities stem from research systems developed

in the early 1980s, most of which were primarily designed for editing

computer programs. Figure 1 provides a simple example of text elision

in source code: on the left there is a normal, non-elided, display of

twenty lines of program code, and on the right there is an elided view

of the same length. The elided version of the program shows the entire

range of the program (from the first line to the last), with low-level

regions of the code replaced with ellipses to depict the elision.

The Cornell Program Synthesizer (Teitelbaum 1981) was among the

first interfaces to demonstrate text elision. It used syntax-directed edit-

ing, based on the grammar of the language, to ensure that programmers

created syntactically legal programs. Programmers could expand and

contract program constructs to provide successively more detailed or

abstract views.

holo.tex; 29/10/2001; 15:31; p.3



4 Matthew Smith and Andy Cockburn

Syntax-directed editing tightly constrains the programmer into spec-

ifying programs in a top-down manner, which may not match their

preferred approach to program expression. Following the Cornell Pro-

gram Synthesizer, several systems used less constraining versions of

elision based on program block-statements. Examples include Quips

(Smith, Barnard & Macleod 1984), Tioga (Teitelman 1985) and EMILY

(Barstow, Shrobe & Sandewall 1984). In his cornerstone paper on fish-

eye views, Furnas (1986) presented an extension to elision interfaces in

which an algorithm, called the ‘degree of interest’ formula, automati-

cally selected the regions for expansion and contraction based on the

user’s current focal-point (cursor location in the program) and an ‘a-

priori interest’ value associated with program structural elements. More

recently, text elision has been proposed as a mechanism to improve

access to the world wide web on mobile devices which have severely

limited screen space (Buyukkokten, Garcia-Molina & Paepcke 2000).

The elision systems described above all provide binary mechanisms

for elision: text is either shown or it is removed from the display. Scal-

able fonts allow greater levels of control over the degree to which text is

‘removed’ from the display, allowing text at the user’s focal point to be

displayed at full size, while becoming smaller further away. This tech-

nique is commonly used in graphical visualisations (for example, see ?),

but it has also been used in text-based menu selection (Bederson 1999)

and in a groupware text editor DOME (Cockburn & Weir 1999).

The primary limitation of prior work is that few of these systems

have been empirically evaluated. We are unaware of any formal evalu-

ations of elision as a mechanism to support source code navigation.

holo.tex; 29/10/2001; 15:31; p.4



Hidden Messages 5

2.1. The Jaba System

The evaluation of text elision described in the following section used

the Jaba program editing environment as a test-bed. Jaba (Cockburn

2001) was designed to experiment with the integration of concepts from

Literate Programming (Knuth 1992), fisheye views (Furnas 1986) and

hypertext (Conklin 1988). In essence, it is an experimental dynamic

and interactive version of Javadoc. A typical Jaba window is shown in

Figure 2.

Jaba parses Java classes, extracting structural information concern-

ing the class’s methods, constructors, and statement blocks (such as

loops, conditionals, and so on). It also parses user defined ‘chunks’

which can contain any arbitrary series of lines in the program; for

instance, a chunk may be a group of related methods, a piece of doc-

umentation, or a series of declarations. Chunks can be defined at any

level in the program structure, and they can be nested.

All of the parsed structural elements in the class can be elided. For

example, in Figure 2, the only expanded element is the user-defined

chunk GuiConstructionMethods which contains four method definitions:

from make five fields to make dice and checkboxes. The contents of

each of these methods is elided, and shown in extremely small (illegible)

text. Clicking on the name of any method or chunk toggles the elision of

its contents (displaying it, then eliding it). Expanded method and chunk

names are coloured blue; contracted ones red. Jaba supports many

additional hypertextual facilities for linking between classes, but these

did not feature in the evaluation and are not further described in this

paper. To focus the experiment on navigation within the text editor,

the graphical representation of program contents on the left-hand side

of Figure 2 was removed.

holo.tex; 29/10/2001; 15:31; p.5



6 Matthew Smith and Andy Cockburn

Figure 2. Full Jaba environment.

In the evaluation, three different levels of elision within Jaba were

compared, as shown in Figure 3. Apart from the level of elision pro-

vided, the three interfaces were identical. The ‘flat text’ level (Fig-

ure 3(a)) provided no elision—it provides a control for comparison with

the eliding conditions. The ‘legible’ level (Figure 3(b)) renders elided

text in a font that is just large enough to read. The ‘illegible’ level

(Figure 3(c)) uses a one-point ‘greeked’ font. The illegible level still

provides more contextual information than previous elision systems,

several of which simply replaced hidden text with an ellipsis (. . . ).

3. Evaluation

The aim of the experiment was to determine whether text elision im-

proves programmer efficiency in carrying out typical source code editing

and browsing tasks. We also wished to scrutinise whether different

holo.tex; 29/10/2001; 15:31; p.6



H
id

d
en

M
es

sa
g
es

7

(a) Flat text. (b) Legible elision. (c) Illegible elision.

Figure 3. Jaba source editing windows for the same program with the three levels of elision for suppressed text, showing the

same clickScoreCell method at the top of each window.

h
o
l
o
.
t
e
x
;

2
9
/
1
0
/
2
0
0
1
;

1
5
:
3
1
;

p
.
7



8 Matthew Smith and Andy Cockburn

forms of elision were more or less useful as the size of the source

code files increased. Finally, we were interested in the programmers’

subjective preferences between flat text editors and elision editors.

The experimental design was a two-way analysis of variance (ANOVA)

with repeated measures for independent variables ‘interface type’ (three

levels) and ‘file size’ (two levels). The three levels of interface type were

flat text, legible elision and illegible elision, as shown in Figure 3. The

two levels of file size were ‘small’ and ‘large’, as described below.

In order to focus purely on the support provided by text elision, we

used the same base interface for all three interface conditions. Many

of Jaba’s interface capabilities were removed or disabled, including the

navigation tree that allows rapid shortcuts to the methods in the class

(see the left-hand side of Figure 2). The potential confounding factors

associated with the removal of the graphical navigation tree—which is

a common feature in most modern source code editors—are discussed

in Section 5. In all experiments the source code editor window was fixed

at the same absolute size of 80 characters wide by 40 lines (full size)

long.

In selecting Java classes for use in the experiment, we analysed

several large Java projects to determine sizes for the ‘small’ and ‘large’

levels. We found many classes in the range of 160–200 lines, and chose

this for the small level, providing 4–5 screenfuls when fully expanded.

These ‘small’ classes often represented simple business objects. We also

found many large classes of around 600–800 lines, especially where

Graphical User Interface (GUI) objects were concerned. However, such

classes are often very different in composition, and are not always

edited manually. We therefore chose a size of 360–400 lines for the

‘large’ level (9–10 screenfuls), finding many classes representing more

complex business objects in or near this range. We avoided classes with

holo.tex; 29/10/2001; 15:31; p.8



Hidden Messages 9

only one or two very large methods, as this would provide an unfair

advantage for the elision interfaces in certain tasks. Furthermore, to

avoid confusion in tasks requiring a certain method to be found, we

removed or changed the name of overloaded methods in each class.

Four different types of tasks were included in the evaluation. Each

task involved navigation in a single Java class and was treated as a

separate experiment. The design of each experiment and our predicted

outcomes are discussed below.

Experiment One: Signature Retrieval

All tasks in this experiment were of the form: “Find the type of the

< xth> argument to method <method name>.”

This required subjects to retrieve information from the signature of

a method. This is a common programming activity—when writing code

to invoke a method, programmers often want to check the arguments

and return type. In the files used in the experiment, the method sig-

natures were always top-level structural elements, ensuring that they

were never elided out of the text display.

We expected performance to be significantly faster with the two

eliding interfaces (legible and illegible) than with the flat text inter-

face, especially with larger files. The rationale for this prediction is

that the eliding interfaces will suppress all methods’ details, producing

a less ‘cluttered’ display. Also, because the unneeded information is

suppressed, less scrolling is necessary.

Experiment Two: Body Retrieval

In this case, tasks were of the form: “In method <method name>, find

the first call to method <called name>.”

holo.tex; 29/10/2001; 15:31; p.9



10 Matthew Smith and Andy Cockburn

This required subjects to find the method and inspect its contents.

This is a typical debugging task—compilers often report an error at a

certain clause of a certain method, and in some systems the programmer

must find this manually.

This experiment includes the same method-signature search compo-

nent as Experiment One. For this part of the task, we expected the

elision interfaces to be significantly faster than flat text. Having found

the required method, the subjects needed to find specific information

within the method’s detail. This second component of the task raises

different predictions for the three interfaces. With the illegible elision

interface, subjects must click on the method-signature to expand its

contents. We therefore reasoned that for small files, this would cost

similar amounts of time to that gained by a faster initial search. For

large files, we predicted that the initial time saving would be greater, re-

sulting in better overall performance with the illegible elision interface.

With the legible elision interface we were interested to observe subject

behaviour. Although the elided text is just large enough to read, we

were unsure whether or not subjects would prefer to first expand the

method to full size, thus adversely affecting overall performance.

Experiment Three: Combination of Body Search and Signature

Retrieval

Tasks in this experiment were all of the form: “In method <method

name>, find the return type of the method that is called last”.

This required subjects to find a method signature, inspect its method

details and retrieve another method signature within the class. It is

equivalent to Experiment Two with an additional task from Experiment

One. Subjects were instructed not to infer the return type from the

method call, forcing them to perform the second search.

holo.tex; 29/10/2001; 15:31; p.10



Hidden Messages 11

The task is indicative of navigation in source code, where the pro-

grammer follows a series of references and pointers until they find the

desired information.

The scrolling demands of this task are relatively high. We therefore

predicted that the illegible elision interface—which produces the least

cluttered display and therefore requires the least scrolling—would al-

low the most rapid task completion. As for Experiment Two, we were

unsure whether users of the legible elision interface would chose to read

the small text or fully expand the method details, and we were therefore

not confident in predicting its efficiency.

Experiment Four: Visualisation Search

The final experiment involved answering the question: “Determine the

longest method in the class”.

The ability to better visualise the structure of a program is one of

the key claims of elision interfaces. Although this task is artificial, we

included it in order to test this claim.

To avoid subjects needing to count the number of lines, classes were

chosen such that the largest method was clear from a visual scan of the

code. Subjects were told that this was the case.

We predicted that the elision interfaces would allow more rapid

completion of this task because they allow a greater fraction of the

source code to be viewed within each window area and consequently

require less scrolling. Further extending this argument, we predicted

that the illegible elision interface would out-perform legible elision.

holo.tex; 29/10/2001; 15:31; p.11



12 Matthew Smith and Andy Cockburn

Subject Details and Procedure

The twelve subjects were all volunteer postgraduate Computer Science

students. Although the number of subjects is relatively low, the re-

peated measures experimental design gives a relatively high degree of

statistical power. All subjects had several years of experience with Java

syntax. Each participant’s experiment lasted approximately twenty-

five minutes, including training time. Training involved explaining and

demonstrating each of the three interfaces, then allowing subjects to

familiarise themselves with each by navigating in a sample file.

Each of the four experiments required subjects to perform the same

navigation task using all three interfaces and both file sizes, giving a

total of 24 tasks. To control possible learning effects, a different class

was used for each task (12 classes per file size), and the order subjects

used each interface was rotated between subjects.

For comparability within experiments, it was necessary to choose

similar method locations in the different files. For example, in Exper-

iment One, all six methods chosen for retrieval were approximately

40 lines from the end of their respective classes. We were concerned

that subjects might recognise this consistency and alter their behaviour

accordingly. To control this, we randomised the sequence of the 24

tasks, so that the four experiments were actually interspersed.

Each task was presented to the subject in a command-line control

interface. Once the subject had read the task and confirmed that they

understood it, they pressed a key to begin. The control interface then

opened the appropriate version of Jaba, with the appropriate class dis-

played. The timing was performed by the control interface, and began

once the file had been fully loaded in Jaba, avoiding bias due to Jaba’s

parsing times. Once the subject had completed the task, they clicked

holo.tex; 29/10/2001; 15:31; p.12



Hidden Messages 13

Table I. Mean (standard deviation) times in seconds for each experiment, across each level
of interface type and file size.

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Small Large Small Large Small Large Small Large

Flat 8.7 (1.5) 12.8 (2.4) 7.9 (2.9) 13.0 (3.7) 12.3 (1.6) 25.5 (5.3) 8.0 (2.5) 13.4 (5.1)

Legible 7.4 (1.4) 11.2 (2.5) 9.4 (2.8) 15.3 (5.9) 12.6 (2.2) 21.9 (4.2) 7.4 (2.2) 12.1 (3.0)

Illegible 6.6 (1.6) 9.9 (2.2) 8.5 (1.6) 11.6 (2.8) 13.2 (2.9) 18.2 (4.5) 7.5 (2.9) 12.3 (3.5)

a ‘Done’ button at the bottom of the control interface, at which point

the timing ceased.

After each task, subjects were asked to respond to a 5-point Likert

scale question: “The <flat/legible/illegible> interface was effective for

the task” (1=disagree, 5=agree). Subjects were asked to provide com-

ments after training, after each task, and at the end of the experiment.

4. Results

Overall, the subjects had few problems with the experimental method

and with using the three interfaces. The tasks were solved quickly,

with a mean task completion time of 12.0 seconds (standard deviation

θ=5.5) across the 288 task pool (twelve subjects, four experiments,

three interfaces and two file types).

Performance data for the four experiments are summarised in Ta-

ble I. Subjective responses to the Likert-scale questions are summarised

in Table II and Figure 4. The results of each individual experiment are

described below.

holo.tex; 29/10/2001; 15:31; p.13



14 Matthew Smith and Andy Cockburn

Table II. Mean (standard deviation) responses for each experiment to the 5-point Likert
scale question: “The interface was effective for the task”. Ticks indicate a significant
difference at the .05 level using Friedman Tests (df = 2, N = 12 in each case).

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Small Large Small Large Small Large Small Large

Flat 2.8 (0.8) 2.5 (0.8) 3.3 (1.2) 3.0 (1.0) 3.1 (0.8) 2.5 (1.0) 3.0 (0.8) 2.7 (0.9)

Legible 3.3 (1.1) 3.0 (1.0) 3.6 (1.1) 3.3 (1.1) 3.3 (1.1) 3.6 (1.2) 3.7 (0.9) 4.0 (1.0)

Illegible 3.6 (1.1) 3.6 (1.0) 3.3 (1.0) 3.1 (0.9) 3.2 (0.9) 3.3 (1.1) 3.2 (1.0) 3.3 (1.1)

χ2
r 5.5 7.5 0.9 0.8 0.8 7.3 3.8 9.5

p 0.06 0.02 0.64 0.67 0.67 0.03 0.15 0.01

Significant ? ✘ ✔ ✘ ✘ ✘ ✔ ✘ ✔

Figure 4. Likert responses for each experiment, across each level of interface type

and file size.

Experiment One: Signature Retrieval

Experiment One compared the time taken to find a named method

using the three interfaces. We predicted that elision interfaces would

allow better performance than the flat text interface, and that illegible

elision would out-perform legible elision.

The mean task times for small and large files were 7.58 (θ 1.7) and

11.28 (θ 2.58) seconds, providing a reliable difference (F(1,11) = 95.5, p

< .001). This unsurprising result indicates that the subjects took longer

holo.tex; 29/10/2001; 15:31; p.14



Hidden Messages 15

Figure 5. Experiment One: Mean task completion times and standard errors (above

and below the mean).

to browse large files than short ones due to the additional scrolling

required.

The means for the the flat, legible and illegible interfaces were sig-

nificantly different at 10.74 (θ 2.8), 9.30 (θ 2.8) and 8.24 (θ 2.5) seconds

respectively (F(2,22) = 11.6, p < .001). As shown in Figure 5, illegible

elision performed best overall. This confirms our prediction that for

retrieval from a method signature (a non-elided element), the suppres-

sion of irrelevant detail increases efficiency. The legible elision interface

was not substantially slower than the illegible elision one.

Subjective responses to the Likert-scale question “The interface was

effective for the task” reflected the performance measures. The subjects

rated the illegible elision interface as more effective than the legible

elision interface, with the flat text interface receiving the worst rating.

These results are summarised in Table II and Figure 4.

There was no significant interaction between interface type and file

size (F(2,22) = 0.33, p = .72). The absence of an interaction is clear in

Figure 5, which shows that the mean task completion times degraded

between the small and large file sizes at a similar rate for the three

holo.tex; 29/10/2001; 15:31; p.15



16 Matthew Smith and Andy Cockburn

Figure 6. Experiment Two: Mean task completion times and standard errors.

interfaces. We were somewhat surprised by this. We had predicted that

the benefits of the elision interfaces would become larger (in comparison

to the flat text interface) as the file size increased.

The subjects’ comments provided an explanation for the absence

of a reliable interaction between factors ‘interface’ and ‘file-size’. In

Jaba, method signatures were the only program elements coloured red.

When using the flat text interface, the subjects made heavy use of the

red text to allow them to scroll rapidly to the method signatures, while

ignoring all non-red detail. As a result, although the elision interfaces

were reliably faster than flat text, their benefits did not increase relative

to the flat text interface with larger files.

Experiment Two: Body Retrieval

Experiment Two compared the times taken to find a specific method

call within the body of a named method. We predicted no difference

between elision and flat text interfaces for small files, but suspected

that elision interfaces would out-perform flat text in large files.

There was a significant difference between the mean task times for

small and large files of 8.59 (θ 2.5) and 13.3 (θ 4.5) seconds (F(1,11) =

holo.tex; 29/10/2001; 15:31; p.16



Hidden Messages 17

56.6, p < .001). Again, this is a result of tasks with longer files requiring

more scrolling.

The main effect for interface type was not significant (F(2,22) =

1.73, p = .2), with mean times of 10.5 (θ 4.2), 12.32 (θ 5.4) and 10.02

(θ 2.7) seconds for the flat, legible and illegible interfaces. Furthermore,

the interaction between file size and interface type was not significant

(F(2,22) = 1.95, p = .17). Although these results do not provide a

statistically reliable confirmation of our predicted results, the relative

performances of the flat text and illegible interfaces with the small and

large file sizes are as expected. Figure 6 indicates that for large files, the

benefits of illegible elision appear to be realised in comparison to the

negligible difference between the flat and illegible conditions for small

files.

Figure 6 also shows the surprising result that the legible elision

interface provided a slower mean task completion time than the flat text

interface, for both file sizes (although this is not a statistically reliable

effect). We observed that when using legible elision, ten out of twelve

subjects did not expand the suppressed text. Instead, they choose to

scan the small but just legible text to find the appropriate item. This

had an adverse affect on their performance, as the items were much

harder to read in the smaller font, and subjects reported the need to

‘squint’. Only two of those ten subjects changed their behaviour after

experiencing this problem. Interestingly, the subjects’ Likert ratings

for the three interfaces showed a small, but not significantly reliable,

preference for legible elision with both file sizes (see Table II). Sev-

eral subjects also commented that the legible interface provided a nice

balance between the other two.

holo.tex; 29/10/2001; 15:31; p.17



18 Matthew Smith and Andy Cockburn

Figure 7. Experiment Three: Mean task completion times and standard errors.

Experiment Three: Combination

Experiment Three combined the tasks of Experiments One and Two,

providing an indirect search through methods: first finding a method

signature, then searching its body for a specific method invocation,

and then finding its method signature. We predicted that the illegible

elision interface would allow the most rapid task completion, and we

were interested to see how the subjects would use the legible elision

interface.

The main effect for file size was again significant (F(1,11) = 88.9,

p < .001), but largely irrelevant as before. Mean task times for the

flat, legible and illegible interfaces were 18.9 (θ 7.8), 17.3 (θ 5.8) and

15.7 (θ 4.5) seconds, providing a reliable difference (F(2,22) = 7.8, p <

.01). Again, the illegible elision interface allowed the most rapid task

completion.

When browsing small files, the mean task completion times across

the three interfaces were similar. However, as shown in Figure 7, the

benefits of the elision interfaces become marked when solving tasks in

larger files, particularly with the illegible elision interface. This relative

performance improvement with the illegible elision interface resulted

holo.tex; 29/10/2001; 15:31; p.18



Hidden Messages 19

in a significant interaction between file size and interface type (F(2,22)

= 11.8, p < .001). As predicted, this reflects the benefits of illegible

elision when more extensive searching is required.

Table II shows a reliable difference between the subjects’ ratings of

the effectiveness of the three interfaces when navigating through large

files, but not for small files. For both small and large files, the subjects

rated the legible elision as most effective, even though it provided the

worst mean performance. Subjects again mentioned the balance it pro-

vided between the other two interfaces. They also reported less trouble

with ‘squinting’ at the just legible suppressed text than in Experiment

Two. The most likely explanation for this is that unlike Experiment

Two, this experiment did not require a specific method name to be

found (rather, just the last method invocation in the method). From

Figure 4, it is interesting to note that ratings for the flat text interface

decreased dramatically with larger files, while ratings for both elision

interfaces increased.

Experiment Four: Visualisation Search

Experiment Four compared the subjects’ ability to find the largest

method in a class file using the three interfaces. We predicted that

the elision interfaces would allow more rapid completion of this task.

The mean task times for small and large files of 7.6 (θ 2.5) and 12.6

(θ 3.9) seconds were significantly different (F(1,11) = 75.7, p < .001).

Contrary to our prediction, there was no significant difference be-

tween interface types, with means of 10.7 (θ 4.8), 9.7 (θ 3.5), and 9.9

(θ 4.0) seconds for the flat, legible and illegible interfaces (F(2,22) =

1.1, p = .36). There was also no significant interaction between file size

and interface type (F(2,22) = 0.38, p = .7).

holo.tex; 29/10/2001; 15:31; p.19



20 Matthew Smith and Andy Cockburn

Figure 8. Experiment Four: Mean task completion times and standard errors.

We were very surprised by the similarity of performance across the

interfaces (Figure 8). Even though the mean task completion times with

the elision interfaces were lower, the differences were very small. Sub-

jects again commented that with the flat text interface, they scrolled

more rapidly, trusting their eyes to identify large blocks of text. In

many cases, subjects did not need to compare similar methods, and

could determine the answer from only a single scan.

Despite these similarities, the mean ratings for effectiveness again

indicated a strong preference for the legible elision interface (Table II).

As for the previous experiment, ratings for flat text reduced with large

files, but increased for both elision interfaces (Figure 4).

5. Discussion

When first shown the illegible elision interface during training, several

of the subjects mentioned that the interface was ‘neat’ or ‘cool’. The

performance results show that it is more than this—it can yield statisti-

holo.tex; 29/10/2001; 15:31; p.20



Hidden Messages 21

cally significant performance improvements for source code navigation

tasks.

To summarise the results, in all of the large file navigation tasks

(Experiments One to Three), the illegible elision interface provided the

most rapid mean task completion time. In two of these tasks, the flat

text interface provided the slowest mean task completion time. The legi-

ble elision interface was less successful than the illegible elision interface

in terms of task performance, yet it received the highest ‘effectiveness’

ratings from the subjects in three of the four experiments. Despite com-

ments that the legible interface provided a good compromise between

illegible elision and flat text, its primary limitation appeared to be that

it encouraged users to solve tasks by ‘squinting’ at the tiny source code

rather than expanding it to normal flat text.

5.1. Confounding factors and further work

Although the results are promising, there were several limitations in

the study that we plan to address in further work.

In designing a carefully controlled experiment that focused solely on

the efficiencies of elision interfaces, we excluded code browsing features

that are normally available in commercial software development envi-

ronments. In particular, we removed the graphical tree representation

of the source code structure.

It remains unclear how the elision interfaces would have compared to

flat text if the users had been able to use their normal techniques—such

as graphical tree browsers—for navigating through the source code. We

strongly suspect that many programmers frequently resort to scrolling

within the text editor, in the manner tested by our experiments. How-

ever, we are also confident that many programmers will make heavy use

holo.tex; 29/10/2001; 15:31; p.21



22 Matthew Smith and Andy Cockburn

of tree browsers when available. In future work we wish to scrutinise

programmer behaviour with and without elision interfaces when the

interfaces support alternative schemes for moving through the code.

Our prediction is that the benefits of elision interfaces will still be

apparent, because we suspect that using graphical code browsers will

raise cognitive, perceptual, and motor-coordination requirements due

to the user switching their attention and cursor between the source

code window pane and the graphical window pane.

Another area for further work is in evaluating the effectiveness of

elision interfaces for working with other structured documents such as

web pages. The successive display of increasingly detailed information

provided by elision interfaces seems to be a particularly attractive so-

lution to the problem of browsing web pages on small displays such

as personal digital assistants (PDAs). Buyukkokten et al. (2000), for

example, discuss a PDA interface for browsing web-pages.

6. Conclusions

Text elision interfaces provide ‘folding’ views of structured documents,

allowing users to selectively reveal successive layers of detail within

particular document regions. Several researchers have argued that eli-

sion interfaces are particularly suited to source code editors, because

they allow programmers to focus on relevant detail while minimising

the display of information that is superfluous to their task. It has also

been argued that they can make navigation through source code more

efficient.

holo.tex; 29/10/2001; 15:31; p.22



Hidden Messages 23

Although several source code editors have supported text elision, we

are unaware of prior research that empirically investigates its effective-

ness.

The evaluation reported in this paper compared the performance

and preferences of programmers when navigating through Java source

code using three interfaces that differed only in their support for text

elision. The first interface provided a normal ‘flat text’ view of the

source code, with no support for text elision. The other two interfaces

supported ‘illegible’ and ‘legible’ elision facilities, which diminished

elided text to an extremely small and just legible degree respectively.

Results of the evaluation showed that users were able to complete

navigation tasks more quickly with the eliding interfaces, particularly

when working with larger source code files. Although the programmers

rated the ‘legible’ type of elision more highly, their performance was

reliably better when using the illegible elision interface.

Future work will focus on further evaluating elision capabilities when

programmers are free to choose between a wide range of different tools

for source code navigation.

Acknowledgements

This research is supported by a New Zealand Royal Society Marsden

Grant.

holo.tex; 29/10/2001; 15:31; p.23



24 Matthew Smith and Andy Cockburn

References

Barstow, D., Shrobe, H. & Sandewall, E., eds (1984), Interactive Programming

Environments, McGraw-Hill.

Bederson, B. (1999), Fisheye menus, Technical Report CS-TR-

4138, UMIACS-TR-2000-31, HCI Lab, University of Maryland.

http://www.cs.umd.edu/hcil/fisheyemenu/.

Buyukkokten, O., Garcia-Molina, H. & Paepcke, A. (2000), Seeing the Whole in

Parts: Text Summarization for Web Browsing on Handheld Devices, in ‘Pro-

ceedings of the Tenth International World-Wide Web Conference, 2000.’.

URL: citeseer.nj.nec.com/buyukkokten00seeing.html

Cockburn, A. (2001), ‘Supporting Tailorable Program Visualisation Through Lit-

erate Programming and Fisheye Views’, Information and Software Technology

43(13), 745–758.

Cockburn, A. & Weir, P. (1999), ‘An investigation of groupware support for col-

laborative awareness through distortion-oriented views’, International Journal

of Human Computer Interaction 11(3), 231–255.

Conklin, J. (1988), Hypertext: An introduction and survey, in I. Greif, ed., ‘Com-

puter Supported Cooperative Work: A Book of Readings’, Morgan Kaufmann.

Furnas, G. (1986), Generalized fisheye views, in ‘Human Factors in Comput-

ing Systems III. Proceedings of the CHI’86 conference.’, Amsterdam; North

Holland/ACM, pp. 16–23.

Knuth, D. (1992), Literate Programming, Stanford, California: Center for the Study

of Language and Information. CSLI Lecture Notes, no. 27.

Leung, Y. & Apperley, M. (1994), ‘A Review and Taxonomy of Distortion-Oriented

Presentation Techniques’, ACM Transactions on Computer Human Interaction

1(2), 126–160.

Sarkar, M. & Brown, M. (1992), Graphical fisheye views of graphs, in ‘Proceedings

of CHI’92 Conference on Human Factors in Computing Systems Monterey, May

3–7’, Addison-Wesley, pp. 83–91.

Schaffer, D., Zuo, Z., Greenberg, S., Bartram, L., Dill, J., Dubs, S. & Roseman, M.

(1996), ‘Navigating Hierarchically Clustered Networks through Fisheye and Full-

Zoom Methods’, ACM Transactions on Computer Human Interaction 3(2), 162–

188.

holo.tex; 29/10/2001; 15:31; p.24



Hidden Messages 25

Smith, S., Barnard, D. & Macleod, I. (1984), ‘Holophrasted displays in an interactive

environment’, International Journal of Man-Machine Studies 20(4), 343–355.

Teitelbaum, T. (1981), ‘The Cornell Program Synthesizer: A Syntax-Directed

Programming Environment’, Communications of the ACM 24(9), 563–573.

Teitelman, W. (1985), ‘A tour through Cedar’, IEEE Transactions on Software

Engineering 11(3), 285–302.

holo.tex; 29/10/2001; 15:31; p.25



holo.tex; 29/10/2001; 15:31; p.26


