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ABSTRACT 
Menus are a primary control in current interfaces, but 
there has been relatively little theoretical work to model 
their performance. We propose a model of menu 
performance that goes beyond previous work by 
incorporating components for Fitts’ Law pointing time, 
visual search time when novice, Hick-Hyman Law 
decision time when expert, and for the transition from 
novice to expert behaviour. The model is able to predict 
performance for many different menu designs, including 
adaptive split menus, items with different frequencies and 
sizes, and multi-level menus. We tested the model by 
comparing predictions for four menu designs (traditional 
menus, recency and frequency based split menus, and an 
adaptive ‘morphing’ design) with empirical measures. 
The empirical data matched the predictions extremely 
well, suggesting that the model can be used to explore a 
wide range of menu possibilities before implementation.  

Author Keywords 
Menus, Hick-Hyman Law, Fitts’ Law, performance 
modelling, adaptive behaviour. 

ACM Classification Keywords 
H5.2 [User Interfaces]: Interaction styles.  

INTRODUCTION 
Menus are one of the primary controls for issuing 
commands in graphical user interfaces. Commensurate 
with their importance, there has been a great deal of 
research into alternative designs, including marking 
menus [23], keyboard shortcuts [19], split menus [31], 
adaptive menus [10], tracking menus [12], cascade 
improvements [2], and fisheye menus [4].  

While the empirical work evaluating menus is strong, 
there has been less theoretical work attempting to predict 
the efficiency of alternative designs. When models have 
been proposed, they have been based on the Fitts’ Law 
pointing requirements and thus ignore the time taken to 
find the item in the menu [2], or they ignore the users’ 

skill development by addressing only expert [25] or 
novice [5] behaviour.  

These problems arise because the theories have not 
adequately taken the Hick-Hyman Law into account. This 
law models human decision time as a function of the 
information content conveyed by a visual stimulus [16, 
20]. Although other models such as Fitts’ Law have been 
rigorously studied in HCI, the Hick-Hyman Law has 
failed to gain momentum despite its value for modelling 
the time taken to choose a command or action.  

In this paper, we propose a model of menu selection time 
that incorporates both the Hick-Hyman and Fitts’ Laws, 
and that integrates a transition from novice to expert 
performance. As we will see, the model accommodates a 
variety of alternative menu designs, both adaptive and 
non-adaptive. We conducted an experiment to calibrate 
several parameters in our model, and we then used the 
model to predict performance with four menu types: 
traditional menus, recency-based split menus (widely used 
in commercial software), frequency-based split menus, 
and a novel ‘morphing’ design. Finally, we conducted an 
experiment to compare the predictions with actual 
performance. The empirical data matched the model’s 
predictions extremely well.  

This experience shows the model’s potential for 
comparing existing menu designs, and for predicting the 
expected performance of new menu designs. For example, 
the ‘morphing’ menu to be described in this paper is an 
intuitively appealing design: it reduces pointing time for 
frequent items by gradually enlarging them. However, our 
model predicted that morphing menus would give very 
little advantage over traditional menus; this prediction 
was subsequently confirmed by an empirical analysis of 
its use. These and other results suggest that designers 
could use the predictive model to evaluate a larger 
number of menu designs without having to implement 
them or carry out extensive user trials. 

BACKGROUND 

Hick-Hyman and Fitts’ Laws 
Our model integrates two well-established laws of human 
behaviour. The Hick-Hyman Law [16, 20] describes 
human decision time as a function of the information 
content conveyed by a visual stimulus. Fitts’ Law [11] 
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describes the movement time taken to acquire, or point to, 
a visual target. Both Hick-Hyman and Fitts’ Laws are 
derived from information theory [33], where the 
information content H of an event, measured in bits, is 
inversely proportional to its probability – likely events 
have low information content; unlikely ones, high. The 
formula for information content is: H=log2(1/p), where p 
is the probability of the event. 

The Hick-Hyman Law, then, states that the time T to 
choose an item is proportional to its information content, 
giving T=a+b×H, where a and b are empirically derived 
constants. When the user chooses between C equally 
probable alternatives, the Hick-Hyman Law can be re-
written as T=a+b×log2(C).  

Similarly, Fitts’ Law is based on the amount of 
information that a person must transmit through their 
motor system to move to an item – small, distant targets 
demand more information than large close ones, and 
consequently take longer to acquire. The movement time 
MT taken to acquire a target is modelled by the formula 
MT=a+b×ID, where the ‘index of difficulty’ 
ID=log2(A/W+1), and A is the amplitude of movement 
and W is the target width. 

Fitts’ Law has been heavily used in HCI research, largely 
because many expert tasks require low-level object 
selection of graphical screen elements or of physical keys. 
However, the Hick-Hyman Law has failed to gain 
widespread use. Seow [32] provides a recent analysis and 
review of Hick-Hyman and Fitts’ Laws in HCI, observing 
that while Fitts’ Law has been robustly applied across 
many experiments, attempts to model behaviour with the 
Hick-Hyman Law have been less successful. For example, 
Soukoreff and MacKenzie [35] tried to fuse Hick-Hyman 
and Fitts’ Law to predict performance with visual 
keyboards, but their later empirical work refuted the 
model [27]. Sears et al. [30] claim that Soukoreff and 
MacKenzie’s model failed because it used the Hick-
Hyman Law to predict visual search time, which is not 
modelled by the law – Hick and Hyman’s original 
experiments timed decision time in response to clear 
visual stimuli.  

Hoffmann and Lim [17] also attempted to fuse Hick-
Hyman and Fitts’ models, with limited success in an 
abstract decision plus pointing task. However, their model 
is not directly applicable to typical computer use.  

Menu studies and performance models 
Although scarce when compared to the extensive 
developmental and empirical work on menus, there has 
been some notable work on menu performance models, 
which we review here.  

GOMS/KLM. Card, Moran and Newell [8] provide the 
seminal work on user interface modelling. John and 

Kieras [21] present an excellent update review of GOMS 
and KLM research in HCI, including models of expert 
menu use (e.g. [25]). GOMS and KLM models are limited 
for two reasons: they are confined to expert performance 
of routine tasks, and they use a 1.35s average time for 
mental preparation, which is crude compared to the 
precision accessible through the Hick-Hyman law.  

Evidence of Fitts and Hick-Hyman together. Sears and 
Shneiderman [31] present a simple model of menu 
performance. They observed that selection times degraded 
logarithmically with menu length for frequently selected 
items, but linearly with infrequent ones. Although they 
did not use the Hick-Hyman Law to explain the 
observation, we conjecture that their participants were 
moving from linear visual search with unfamiliar items to 
Hick-Hyman decision times as the locations were learnt. 
Landauer and Nachbar [24] did observe that expert 
performance in hierarchical full-screen menu selections is 
well described by Hick-Hyman and Fitts components 
applied in series. Their tasks explicitly emphasised 
decision time over visual search by having well practiced 
participants select an integer or word from among 4096 
candidates. Each menu presented between 2 and 16 sub-
divided ranges of integers or alphabetically ordered 
words, requiring navigation through between 3 and 12 
levels of hierarchy. Although seminal work, the deep 
hierarchies analysed, the total ordering of menu labels and 
the full-screen menus are all highly dissimilar to the 
menus used now, more than two decades after their study.  

Visual search and spatial memory. Prior work has shown 
that users quickly form and rely on spatial knowledge of 
menu item location [22, 34]. Consequently, for expert 
users there is little visual search involved in menu 
selection, reducing the task time to Hick-Hyman decision 
time plus Fitts’ pointing time (both log-based, consistent 
with the observations of Sears and Shneiderman [31]). 
Novices, however, who have not yet formed a spatial 
model must visually search the menu for the target item. 
While there have been conflicting theories and cognitive 
models of how users search menus – randomly [7], 
linearly [26], and in parallel [18] – eye-tracking data 
supports a predominantly top-to-bottom search order [6]. 
Regardless of how users conduct their search, there is 
consistent empirical evidence that novices’ search time is 
linear with menu length [18, 29, 31]. 

Zipf distribution [36]. A model of menu performance 
must accommodate the fact that the frequency of item 
selection is non-uniform. It is well established that the 
frequency of command use follows a Zipfian distribution 
[9, 10, 13, 15] – that is, a power-law function Pn ~1/na, 
where Pn is the frequency of the nth ranked word, and a is 
close to 1. To quickly verify the distribution of menu 
selections, we analysed Microsoft Word menu-use data 
from two sources: our own records (one user, three 



months) and records from Findlater and McGrenere (one 
user, 20 weeks) [10]. Regression analysis showed that 
both datasets are strongly Zipfian for ‘File’ and ‘Insert’ 
menu selections (R2>0.92), and ‘Format’ menu selections 
fit reasonably well (Findlater and McGrenere R2=0.69, 
ours R2=0.83). 

ACT-R/PM. Byrne [5] and Anderson, Matessa and 
Lebiere [3] use the ACT-R/PM cognitive architecture to 
predict performance in random menu contents. Their 
models, however, are predominantly concerned with how 
users visually search for menu targets. 

While this previous work hints at the relation between the 
Fitts and Hick-Hyman Laws, they do not address the 
user’s transition from novice to expert behaviour – that is, 
that search time in terms of menu length [24] shifts from 
linear to logarithmic as expertise increases.  

A NEW MODEL OF MENU PERFORMANCE 
We propose a model of menu performance that integrates 
both the time to find the item and the time to move to the 
target as components of performance. It also incorporates 
the user’s gradual transition from linear visual search to 
logarithmic decision time as they gain expertise.  

Given a menu with multiple items, our model predicts 
selection time Ti for each item i, based on the sum of the 
decision/search time Tdsi and the Fitts’ Law pointing time 
Tpi for that item: 
 pidsii TTT +=  Equation 1. 
As we are ultimately interested in predicting the average 
performance of entire menu widgets, rather than just 
individual selections, we generalise the model to average 
performance (Tavg) using: 

 ∑
=

=
n
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 Equation 2. 

where pi is the probability of item i being selected (further 
described below), and n is the number of menu items. In 
the next sections, we detail the calculation of the two 
components of the model, Tpi and Tdsi. 

Item pointing time – Tpi 
The pointing time component for each item, Tpi, uses the 
traditional Fitts’ Law model: 
 )1/(log 2 ++= iipi WAbaT  Equation 3. 
where Ai and Wi are the amplitude of movement to and 
width of target item i, and a and b are constants 
(discussed further in the Calibration section below).  

Item decision/search time – Tdsi 
When users first encounter a menu they must visually 
search for the target item regardless of the particular menu 
design. As they become more experienced with the menu 
they can increasingly rely on spatial location memory, 
reducing task time from linear search to Hick-Hyman 

decision, but only if the interface allows them to do so 
through predictable and stable item placement.  

Our model calculates the decision/search time (Tdsi) by 
interpolating between a linear visual search-time 
component (Tvsi) and a logarithmic Hick-Hyman decision 
time (Thhi) component:  
 hhiivsiidsi TeTeT +−= )1(  Equation 4. 
where ei is the user’s expertise with that item, from 0 
(complete novice) to 1 (complete expert). The equation 
reflects the fact that as users become familiar with the 
items in the menu, their visual search time decreases 
towards zero, and the Hick-Hyman decision time 
dominates.  

Expertise 
We use two factors to model the user’s expertise ei with 
menu item i: ti, the number of previous trials (selections) 
of the item and L, the ‘learnability’ of the interface.  
 ( )ii tLe 11−×=  Equation 5. 
Expertise ei ranges from 0 to 1, with 1 indicating that the 
user is entirely expert. L also takes values in the range 0 to 
1, with 1 representing an entirely learnable menu 
representation – that is, the items do not change locations 
or positions. The value of L can be estimated for different 
interfaces by calculating one minus the average distance 
that items move as a proportion of half of the total menu 
length – e.g., random items will on average move half of 
the menu length l per selection, hence L=1-0.5l/0.5l=0.  

This measure of expertise is important because it is used 
to model the users’ transition from novice visual search to 
expert Hick-Hyman decision, and also because it shows 
that some menu designs can never reach Hick-Hyman 
performance levels because of poor learnability. 

Note that this model of expertise is limited in that it 
makes no allowance for the number of items in the menu; 
in reality, users are likely to need more trials to become 
expert with longer menus (we will consider this in our 
later discussion of future work).  

Item probabilities 
Our model assumes that all items are initially equally 
probable (∀i, pi=1/n), but that their probabilities are 
continually modified to reflect the number of times each 
item is selected (∀i, pi=ti /tt, where tt is the total number of 
selections in the menu). Thus, the model can reflect 
Zipfian or other frequency distributions. 

Visual search time – Tvsi 

We assume that when the user is inexperienced, the visual 
search time for each item is linear with the total number 
of items n (consistent with prior work [18, 29, 31]), and 
that the search time is negligible when the user is expert. 
Thus, we model the visual search time for each item with:  



 vsvsvsi anbT +=  Equation 6. 
where avs and bvs are empirically determined constants.  

Hick-Hyman decision time – Thhi 

Once expert, decision time is dependent on the entropy of 
each item Hi=log2(1/pi). Hence, decision time for each 
item is given by: 
 hhihhhhi aHbT +=  Equation 7. 
where ahh and bhh are empirically determined Hick-
Hyman decision constants. See the Calibration section for 
estimation of these constants. 

Parallel versus serial search and decision 
Although the model assumes that Tdsi and Tpi occur in 
series, this will often not be the case: for example, if the 
cursor is used to track the current visual search region, 
then the visual search and targeting activities will occur in 
parallel. In these cases, however, the logarithmic pointing 
component Tpi is likely to be small in comparison to the 
linear search time Tdsi (discussed further in future work).  

Modelling multi-level menus (e.g. cascades) 
Equation 1 predicts single-level menu selections. When 
users need to navigate through l multiple levels to select 
an item i, we generalise the formula as follows: 

 lj
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 Equation 8. 

where scj is the ‘steering cost’ associated with navigating 
from one menu level to the next. For the average 
efficiency of a multi-level menu widget, Equation 2 for 
Tavg is modified by replacing Ti with MLi. Ahlström also 
proposed adding Fitts’ and steering components to model 
cascade menu selections [2], and for traditional cascade 
menus the steering cost scj can be modeled using the 
steering law [1]: sc=a+b(A/W+1). 

Modelling split menus 
Split menus copy regular menu items into an extra region 
at the top for fast access. Their performance is predicted 
by treating the menu as consisting of two separate menus: 
the split region (Tsplit) and the regular menu region (Treg). 
Equation 1 is modified as follows: 

regisplitisplitisplitii TpTpionsplitDecisT ____ )1( −++= where 

2)1( hhsplit TeionsplitDecis −=  Equation 9. 
and where esplit is the user’s expertise with the contents of 
the split region of the menu. The splitDecision term 
models the time required for the user to decide between 
the split region of the menu and the regular region. Thh2 is 
the time to decide between the two regions, calculated 
from bhh+ahh in Equation 5 (the information entropy H for 
a two way decision is 1). This model of the split decision 
process assumes that expert users (i.e., those highly 
familiar with a stable design) do not decide between 
regions; instead they only decide between the items 

located in the correct split region by drawing on their 
knowledge of the item’s absolute location in the menu, as 
modelled by Ti, further described below.   

The model for Ti assumes optimal decision-making – that 
users always select items from the split when they are 
available there and from the regular menu when they are 
not in the split. Pi_split represents the probability that the 
item is in the split, and can be calculated from knowledge 
about the menu design and the distribution of selections. 
Performance within the two parts of the menu (the split 
region Ti_split and the regular region Ti_reg) is modelled 
using the original formulation of Equations 1-8.  

Note that the learnability of the split region (substituting 
Lsplit for L in Equation 5) is likely to be lower than that of 
the regular region (Lreg) due to item movement in the split. 
Also, certain split designs will prohibit the calculation of 
expertise using Equation 5, because the exact number of 
trials with each item at each split location will be 
unknown. In such cases, a fixed value can be used for esplit 
that is determined either by the designer’s understanding 
or by a simulation of the menu design.  For example, in 
the prediction of recency-based split menus below, we 
used the value 0.2 for esplit, based on a simple 
programmatic simulation of the split menu that showed 
approximately a one-in-five probability of items 
remaining in a stable location in the split.  

CALIBRATING THE FORMULAE 
We conducted an initial study to calibrate the main 
undefined parameters: Fitts’ a and b, visual search avs and 
bvs, Hick-Hyman ahh and bhh. The study analysed Fitts’ 
target acquisition in menus, and two menu designs that 
represent opposite extremes in terms of menu learnability: 
static menus, in which items are never relocated; and 
random menus, in which every item is randomly located 
in the menu on each successive posting. Static menus 
were tested with two datasets: an unfamiliar dataset 
(based on country names) that allows us to examine how 
quickly users learn their item locations, and a familiar set 
from Microsoft Office that represents ‘optimal’ use.  

Method 
Eight participants took part in the study and performed a 
number of single-level menu selections. All participants 
were right-handed graduate computer science students 
and thus competent users of mice, screens and computers. 
They were all familiar with Microsoft Office applications. 

Each participant initially completed a Fitts’ Law block of 
tasks involving pointing to cued menu items. These tasks 
allow us to calibrate the Fitts’ Law parameters a and b; 
and with these values determined, we can then calculate 
the decision/search time (Tdsi) by subtracting pointing 
time from the overall acquisition time (Equation 1). In the 
Fitts’ block, participants were instructed to identify a 



single item displayed in the menu, and then select it as 
quickly and accurately as possible. Only the target item 
was labelled in the menu; all others items were blank. 
Software measured the time from leaving the menu button 
to correctly clicking on the target.  

The menu used in the Fitts’ Law block was sixteen items 
long (each item was 130×22pixels, with the same size 
being used throughout the study). The item in the first 
menu location was labelled “1”, 2nd location “2”, and so 
on up to item “16”. The entire block consisted of ten 
selections of each of the following items, presented in a 
random order: 1, 4, 8, 12, and 16 – 50 selections in all.  

The participants then completed a series of menu 
selections in twelve different conditions covering three 
menu conditions (static+unfamiliar, static+familiar, and 
random menus) and four menu lengths (2, 4, 8 and 12 
items). The participants completed all three conditions in 
a random order with each length before proceeding to the 
next longest length.  

In the static+unfamiliar and random conditions, the menu 
was populated with randomly selected country names (not 
alphabetical) from a list of 177 countries. Each country 
name was only used in one condition to avoid transfer 
effects. In the random condition, the menu items were 
randomly relocated each time the menu was posted. In the 
static+familiar condition, each menu of length n contained 
the first n items from the list ‘New, Open, Close, Save, 
Save As, Save As Webpage, Page Setup, Print Preview, 
Print, Send To, Properties, Exit’, based on the contents of 
Microsoft Office ‘File’ menus. 

Trials within each condition were presented in a series of 
blocks: seven blocks with the static conditions, three with 
random. Each block consisted of n menu selections: one 
for each of the n items in the menu, presented in a random 
order. The seven blocks in the static conditions were 
intended to reveal any transition from visual search to 
spatial knowledge of the menu. 

Participants began each trial by clicking on a ‘Menu’ 
button, which posted the menu and immediately displayed 
the name of the target alongside. Software logged all 
mouse movements and timed the task from the initial 
display of the target.  

Apparatus 
The experiment ran on a Compaq nx9010 laptop 
computer (P4, 2.6GHz) with a 15-inch 1400×1050-pixel 
display. Input was collected through a Logitech three-
button mouse set to a constant control-display gain.  

Design 
Fitts’ Law models were generated for each participant 
from their Fitts’ block data. These models were then used 
to calculate a Fitts’ pointing time Tpi for each trial with the 

three menu conditions. The dependent measure Tdsi was 
calculated by subtracting the Fitts’ time from the total 
selection time using Tdsi=Ti-Tpi (from Equation 1). 

Data from each of the three menu conditions 
(static+unfamiliar, static+familiar, and random) were 
analysed separately, using regression analyses across 
menu length (2, 4, 8 or 12 items) and block (1 to 7 for 
both static conditions, and 1 to 3 for random). Data from 
the random condition were used to calibrate visual search 
parameters (Equation 6); data from static+familiar were 
used to calibrate Hick-Hyman parameters (Equation 7); 
and data from the static+unfamiliar condition were used 
to inspect the learning model’s accuracy (Equation 5).  

Calibration Study Results 

Fitts’ Parameters a and b 
Averaged across all participants, data from the Fitts’ Law 
block were well modelled by Fitts’ Law (R2=0.93, 
p<.01), with Tp=0.37+0.13ID (a=0.37s, b=0.13sec/bit).  

Evidence supporting the Decision and Search Time model 
Figure 1 plots the mean measured decision/search time 
against the number of items, and it shows best-fit 
regression lines for each condition. It clearly shows that 
the trends in Tdsi times across number of items in the 
menu conform to our model’s predictions. In the random 
condition, search time linearly increases with the number 
of items, and the static+familiar condition closely adheres 
to the logarithmic Hick-Hyman predictions. In Figure 2, 
the static+unfamiliar condition shows users making a 
transition from linear visual search to logarithmic Hick-
Hyman performance. Note that the Tdsi differences 
between conditions are relatively large – any model 
failing to account for the transition between novice and 
expert performance will be inaccurate. 
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Visual search time (Tvsi) parameters avs and bvs 
In the random condition, the participants were dependent 
on visual search alone to find their targets – there was no 
way for them to anticipate the location of each item, 
equating to zero expertise in our model (Tdsi=Tvsi when 
expertise is zero, Equation 4). Data from the random 
condition were therefore used to parameterise the visual 
search constants in Equation 6.  

An analysis of variance of performance over blocks 
showed significant improvement between blocks 1 and 2 
(F2,14=4.9, p<.05, apparent in Figure 2), presumably 
because there is an additional cost in reading the menu 
labels for the first time. To avoid incorporating this one-
off cost in the calibration of visual search we removed 
block 1 from the visual search analysis. Our model is 
therefore based on visual search for items that have been 
previously read, which avoids conflating familiarity 
effects with visual search costs. The model of increasing 
expertise is further described below.  

Regression analysis shows an excellent linear relationship 
between Tdsi and the number of menu items (Figure 1): 
Tdsi=Tvsi=0.08n+0.3, R2=0.99, giving values of 0.08s/item 
for bvs and 0.30s for avs.  

Hick-Hyman decision parameters ahh and bhh 
Once completely expert, Equation 4 predicts that 
decision/search time Tdsi depends solely on the Hick-
Hyman formula in Equation 7. As intended, our 
participants were most expert when using the 
static+familiar condition, so we used this data to 
parameterize Equation 4.  

Block 1 was slower than the others (Figure 2), 
presumably due to reading and familiarization effects. As 
Equation 7 only concerns expert performance we removed 
block 1 from this analysis. Regression analysis produced a 
strong model with Tdsi=Thhi=0.08log2(n)+0.24, R2=0.98, 
giving values of 0.08s/bit for bhh and 0.24s for ahh. 

Expertise – Equation 5 
Determining the ‘correct’ formulation of Equation 5 is 
complex because the rate of gain in expertise will be 
influenced by several factors, including the nature or the 
dataset contained in the menu. For example, memory 
chunking suggests that a menu containing three groups of 
four related items will be more memorable than one 
containing twelve unrelated items [28].  

Data from the static+unfamiliar condition represents an 
entirely learnable menu design (L is 1 because items do 
not move), but a ‘hard’ data-set because the items 
contained in the menu are semantically unrelated country 
names. Data from the static+familiar condition also 
represents an entirely learnable interface, but with an 
‘easy’ data-set because it is familiar from Microsoft 
Office and chunked.  

Having calibrated the visual search and Hick-Hyman 
parameters of Equations 6 and 7 above, we calculated the 
cross-block learning prediction for Tdsi using Equations 4 
and 5; as shown in Figure 2. The line shows the predicted 
rate of transition from visual search to Hick-Hyman 
decision for static menus – from initial values determined 
by the random condition in blocks 2-3, towards Hick-
Hyman decision times determined by the latter blocks of 
the static+familiar condition. 

EVALUATING THE MODEL WITH REAL DESIGNS 
We evaluated the model by comparing its predictions with 
empirical measures. Four different types of menus were 
used: traditional menus, morphing menus, recency- and 
frequency-based split menus. The evaluation also uses a 
realistic Zipfian distribution of selections.  

Menu designs 
Four menu types were implemented, modelled and 
evaluated. Traditional menus are the baseline. Recency-
based split menus were included because they are widely 
used in desktop interfaces, and frequency-based split 
menus were used because of prior favourable results [31]. 
The split menu types were visually identical (Figure 3c), 
using a three-item split region at the top of the menu, 
containing the three most recently or frequently selected 
items. Both split menu variants left the main menu region 
unaltered – items were not removed from the main menu 
when added to the split region. 

Both recency and frequency based split menus have been 
previously evaluated elsewhere [10, 31]; to further test the 
predictive capability of our model we also included a new 
and intuitively appealing menu design, which we call 
‘morphing menus’. The design intention is to minimise 
the Fitts’ Law pointing requirement for high-frequency 
items, while maintaining both the user’s ability to form a 
spatial understanding of item location and the designer’s 
intended item order. Figures 3a/b show a morphing menu 
in use during the experiment. The high frequency items 
have large motor-spaces, (e.g. ‘AltaVista’, Figure 3a) 
while the infrequently used items are small (e.g. ‘Green’, 
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menu conditions across blocks of trials (based on the 
mean of all menu lengths per block). 



Figure 3b). High frequency items ‘borrow’ motor-space 
from infrequent items. Mouse-over enlargement is used to 
aid visual identification of items that are displayed in the 
minimum size. Importantly, this enlargement does not 
move the text of the item under the cursor. This avoids 
‘hunting’ effects caused by fisheye distortion [14]. 

To help users learn item locations, ‘morphing’ avoids 
abrupt item enlargement. Initially all items are of equal 
probability and size. After each selection, the probability 
of each item is recalculated: ∀i, pi=ti /tt. A damping 
function is used: tt=n×damping, where n is the number of 
items and damping is a small integer value (higher values 
cause slower adaptation). ti is initialised to damping, and 
is incremented with each selection of item i.   

To reiterate, high frequency probable items ‘borrow’ 
motor-space from improbable ones. The amount of menu 
space available for reallocation is n times the difference 
between the minimum and maximum menu heights (set to 
10 and 22 pixels): sharedHeight=n×(normalHeight–
minHeight). The height of each menu item hi is then 
calculated with hi=minHeight+(pi×sharedHeight). 

Method 
The experiment began with a Fitts’ Law calibration block 
of tasks, identical to that at the start of the calibration 
experiment – the menu was long enough to display 16 
items, but only the target item was displayed; and the 
participants made five selections of the 1st, 4th, 8th, 12th 
and 16th menu item, with logs recording the time from the 
cursor leaving the menu button to selecting the target.  

The menu selection tasks followed, with each task 
involving selecting an item from a 14 item menu. Each 
target item was cued by showing the name of the item 
alongside the menu button, but the target was not revealed 
until the menu was posted. Logs recorded the time from 
posting the menu to selecting the item; hence, task times 
included the decision/search time.  

The eighteen male and female participants (none of whom 
participated in the earlier experiments) used all four menu 
types. An incomplete Latin square controlled menu type 
order. Each participant completed five blocks of tasks 
with each menu type before proceeding to the next.  

Each block of tasks consisted of 45 menu selections, with 
a Zipfian distribution of selection frequency. The 
selection counts for the items were 14, 8, 5, 4, 3, 2, 2, 1, 1, 
1, 1, 1, 1, and 1 (Zipfian R2=0.99). The correspondence 
between item location in the menu and item frequency 
was determined by a one-off random process, and re-used 
across all menu conditions. This was necessary to avoid a 
menu-type bias due to differences in the location of the 
frequently selected items: for example, if the most 
frequent item was at the top of the menu in one condition, 
it would create an artificially low Fitts’ pointing 
requirement. Hence, all conditions in all blocks used the 
following frequency distribution across the 14 menu 
locations (from top to bottom): 2, 1, 14, 1, 4, 1, 5, 1, 1, 8, 
2, 1, 3, 1. Participants received no instruction on the 
frequency of menu item selections or on the location of 
frequent items. They were simply informed that their 
tasks involved selecting menu items as quickly and 
accurately as possible.  

The contents of the menu remained constant across the 
blocks with each particular menu type, but changed across 
menu types – the intention being to allow participants to 
develop expertise with each menu type independently. All 
menus contained three groups of related items split by a 
thin line (see Figure 3): one group of four items (top), 
then two groups of five items. For each participant with 
each menu type, the menu contents were randomly 
constructed by selecting one group of four items and two 
groups of five items. No group of items was reused in any 
other condition. Example groups include car 
manufacturers (Toyota, Honda, Ford, Mazda, Subaru) and 
furniture (Table, Chair, Desk, Lamp, Bed).  

Design 
We designed the study both to test the accuracy of our 
prediction model, and to compare the performance of the 
four different menu designs. For the accuracy analysis, we 
report percentage differences and regression analyses 
between predicted and actual values. For the comparison 
part of the study, we analysed selection time data using a 
4×5 RM-ANOVA for factors menu type (traditional, 
morphing, recency-split, frequency-split) and block (1-5).  

RESULTS 
The theoretical predictions for traditional and morphing 
menus were calculated exactly as described by the 
equations above (spreadsheet at www.cosc.canterbury.ac.nz/ 
~andy/publs/chi07/). The split menu predictions required 
additional parameterisation as follows. For frequency-
based splits, the value of Lsplit in blocks 1 and 2 were set 

 (a) Morphing (b) Morphing (c) Split 
Figure 3. Morphing and split menus. The target is
shown next to the menu button when posted. 
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Figure 4. Predicted performance (left) and actual performance (right) (note the baseline at 1.0s). 

to 0.6 and 0.9 to account for the small amount of item 
movement within the split prior to the item locations 
becoming stable due to the Zipfian item distribution; the 
value was 1 in all other blocks. For recency-based splits, 
we used a general parameter for esplit (value 0.2) to replace 
Equation 5 which requires a-priori knowledge of item 
location that is unavailable due to the split’s behaviour.  

Prediction Accuracy 
Empirical data (Figure 4, right) matched the predictions 
extremely well. The percentage difference between the 
cross block empirical and predicted means range are all 
under 2% for each of the designs: 1.1% for traditional, 
0.8% for morphing, 1.3% for recency-based splits, and 
1.8% for frequency-based splits. Regression analysis of 
the predicted cross-block mean for each design against the 
empirical mean shows a strong relationship that is close to 
unity: pred=1.02×emp-0.01, R2>0.99. Similarly, 
regression of the predicted cross-design mean for each 
block against with the empirical mean is also close to 
unity: pred=0.98×emp+0.03, R2=0.96.  

As Figure 4 suggests, regression analysis of predicted 
values against empirical ones for each design across 
blocks shows a strong relationship for morphing 
(R2>0.99) and frequency-splits (R2=0.98), but weaker 
ones for recency-splits (R2=0.84) and traditional menus 
(R2=0.52). The poor fit for traditional menus is caused by 
the participants’ degrading performance after block 3, 
which we believe was due to a boredom effect caused by 
their familiar non-adaptive behaviour. 

It is important to note that the disparity between the 
predicted and actual data is relatively small when 
compared to the differences between some of the menu 
designs. For example, frequency-based splits were 
predicted to be 21.8% faster than recency-based ones and 
empirical measures showed this prediction to be accurate, 
with an actual value of 21.5%.  

It is also important to note that the fundamental premise 
of the model – that users will migrate from linear search 
strategies to logarithmic Hick-Hyman choice – accounts 
for a substantial effect in performance measures, 
particularly when a design fully supports it. For example, 

the model predicts a 24% improvement between blocks 1 
and 5 for frequency-based splits, supported by an 
empirical difference of 25%; recency-based splits were 
predicted to allow less cross-block improvement (11%) 
due to their spatial instability, and again the prediction 
was supported (12%). Previous models based purely on 
expert performance or purely on visual search fail to 
account for this marked improvement.   

Comparison of menu techniques 
Analysis of variance of actual performance showed a 
significant main effect for menu-type (F3,51=118.8, 
p<.001). Frequency-splits were fastest (mean 1.15s), then 
traditional and morphing (1.22 and 1.24), and recency-
splits slowest (1.47s). A post-hoc Tukey HSD of 0.11s 
showed significant pair-wise comparisons between 
recency splits and all others, but not between the other 
conditions. These results support earlier work [9,29] 
comparing traditional and split menus. As anticipated, 
there was a significant main effect for block (F4,68=142.8, 
p<.001), with pair-wise differences (p<.05) between 
blocks 1-2 and 2-3, but none thereafter. Finally, there was 
a significant type×block interaction (F12,204=14.9, p<.001), 
evident in the slowdown with traditional menus. 

DISCUSSION 
These studies confirm the primary hypothesis of the 
model as predicted by Hick-Hyman and Fitts’ Laws: 
performance with spatially stable menus migrates from 
novice behaviour that degrades linearly with menu length 
due to visual search time, through to expert behaviour that 
degrades logarithmically with menu length. Our calibrated 
model accurately predicted several types of menu 
behaviour, both adaptive and non-adaptive.  

In the following sections we discuss issues for 
consideration in further work: reflections on details of the 
model, on the model as a tool for design, and on the value 
of predictive performance models in UI design.  

Reflections on the model itself  
Although the model is accurate for all four menu types, it 
is notable that it markedly underestimated the 
performance improvement between blocks 1 and 2. A 
possible explanation for this is that the second experiment 



used menus consisting of semantically similar groups or 
‘chunks’ [28], while the static+unfamiliar condition used 
in the calibration experiment did not. Consequently, the 
participants could gain ‘experience’ with menu items 
before they had encountered them: for example, it is 
reasonable to expect that previous selections of ‘Ford’, 
‘Honda’ and ‘Mazda’ would help the user select ‘Toyota’ 
for the first time because of its association with the group 
of cars. Our current model fails to account for this chunk-
based incidental learning between tasks.  

Despite this weakness in the learning model of Equation 5 
(further discussed below) it is notable that the participants 
rapidly became expert when the designs allowed them to 
do so. This highlights the importance of modelling 
learnability because certain designs inhibit the transition 
to expert performance. For example, the model accurately 
predicted that expertise would account for a 24% 
improvement with frequency-split menus, compared to 
only 11% for the recency design currently in wide use. 

Improvements and limitations 
We are continuing to develop and test the model in three 
ways: better modelling of expertise, more work with 
cascading menus, and work with other menu types. 

We are now developing variants of Equation 5 to better 
model increasing expertise. In particular, we want to 
account for three factors influencing the gain in expertise: 
the number of menu items (long menus will be harder to 
learn than short ones); the number of semantic chunks in 
the menu; and incidental learning across chunk items. 

In future work we will empirically test the model of 
cascading menu selections (Equation 8). We will also test 
the model’s success with menus that have different forms 
than the rectangular pull-downs evaluated to date. For 
example, we believe that pie menus will be accurately 
modelled – like traditional menus, they are spatially 
constant (items lie in a stable direction from the cursor), 
and they have both a decision and pointing component.  

Certain menu designs, however, will be harder to model. 
Bederson’s Fisheye Menus [4], for example, dynamically 
adjust the location and size of the items as the cursor 
approaches. This causes undesirable ‘hunting effects’ [13] 
because items are displayed away from the motor-space 
that activates them, but users can ‘lock’ the fisheye to 
ease the problem. Modelling user performance with this 
design is challenging because the cost of the hunting 
effect is unpredictable – it depends on how often the lock 
is used. Despite this challenge, the model will predict 
relatively poor learnability (L) for Fisheye Menus due to 
the low spatial constancy of items.  

Scrolling menus are another challenge for the model. We 
suspect that their multi-part interaction (targeting then 
dragging the scroll-thumb, visually searching for an item, 
and finally targeting it) will overwhelm the Hick-Hyman 

decision time whenever scrolling is necessary. Again, we 
will continue to empirically investigate these issues.  

Reflections on the model’s use in the design process 
The model was used to predict performance for several 
menu designs. Perhaps the most interesting case of these 
is morphing menus – an intuitively appealing design with 
(seemingly) a sound basis in Fitts’ Law, but one that the 
model correctly predicted would provide almost no 
performance improvement. 

First, the example of morphing menus shows the value of 
a predictive model – that in situations where many 
designs are possible and many designs appear to have 
potential, a model can provide an objective view.  

Second, the model is also valuable in explaining why 
designs do or do not perform well. In the case of 
morphing menus, there were two reasons for the design’s 
lack-lustre performance. First, morphing menus only 
focus on pointing time, ignoring decision time; this limits 
the possible improvement that can be realized. Second, 
morphing menus increase some items’ size at the expense 
of others, in order to take advantage of the distribution of 
selections. However, less-frequent items will take longer, 
and the model showed clearly that the overall benefit from 
the larger items would be small.  

It is also possible that performance with morphing menus 
could be improved by changing the parameters of use 
(e.g., the item frequencies). This raises an additional use 
for the predictive model – as part of a simulation system 
that can test a range of parameters, looking for the local 
performance maxima for a particular design.  

Further uses of this and similar models 
Although we have focused on menu selection, the model 
should apply equally well to any interaction that involves 
a choice decision followed by a pointing task. This type of 
interaction is very common in user interfaces, for example 
selecting an item on the desktop, or in a folder, toolbar or 
button-panel. Empirical work is needed to validate the 
model’s use in these domains. 

Finally, it is important to empirically determine whether 
the model is successful with menu selections in real tasks, 
rather than experimentally controlled selections.  

CONCLUSIONS 
Menus are one of the primary controls for issuing 
commands in user interfaces. There are many different 
menu designs, but most constrain the user to predictable 
patterns of behaviour that are amenable to theoretical 
analysis. We presented a model that integrates the Hick-
Hyman and Fitts’ Laws to predict the efficiency of 
alternative menu designs. The model accommodates 
variable item probabilities, the users’ increasing expertise, 
and adaptive and non-adaptive behaviours. We tested the 
model by comparing its predictions for four different 



menu designs with empirical performance measures. The 
predictions were accurate – within 2% of empirical data.  

The model is important for two reasons. First, from a 
theoretical standpoint, there has been surprisingly little 
work in HCI to combine the fundamental Hick-Hyman 
and Fitts’ Laws. Our success will hopefully stimulate 
further work on modelling tasks that include both decision 
and pointing components. Second, the model should aid 
researchers and developers working on alternative menu 
designs, of which there have been many in recent years. 
Indeed, the authors of this paper hotly debated the 
efficacy of the morphing design prior to its modelling, 
implementation, and testing. The model will allow other 
designers to rapidly test alternative schemes without the 
labour costs of implementation and empirical evaluation.  
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