
A G I L E C L A S S R O O M

SOFTWARE
ENGINEERING

WHY SOFTWARE ENGINEERING?

•  “You might think that the biggest part of a software
project is programming, but in a typical project,
programming usually takes up only about 20% of the
total time! 40% is spent on analysis and design and
another 40% on testing. This shows that software
engineering is so much more than programming.” (Bell &
Morgan, 2014)

•  The topic is especially relevant because students can
see that software development is always situated within
a context.

•  More “human” side of computing – analysis,
communication, solving a problem for a group of users.

WHY SOFTWARE ENGINEERING?

•  There is a strong correlation to the NCEA Generic
Technology Internal Achievement Standards, so this
topic underpins a level 3 DT programme with a
focus on developing stakeholder oriented projects:
•  Brief development – determining requirements from

different stakeholder groups
•  Project management – researching project management

methodologies, applying a project management schedule
•  Technological modelling – risk mitigation through

determination of requirements and iterative development
•  Prototyping – trialling, rigorous testing, iterative

development

VISIT THEN IMPLEMENT

•  In order for the students to have an adequate grasp
of the topic, it is important for them to have some
“real life” exposure to software development in the
real world.
•  If possible, arrange a visit to a company for the

students to see the processes in action (with the
added benefit of promoting careers in IT).
•  Alternatively, have a speaker visit your classroom to

discuss their process.
•  Then, have the students implement as much as the

process as possible within the confines of NCEA and
the classroom.

KEY CONCEPT: STRUCTURED
METHODOLOGY

•  Software in the real world is large and complex –
generally developed by teams as it is impossible for
any single person to understand or code.
•  A structured methodology for development is

necessary to manage the complexity of the
software and to ensure it meets the requirements of
the stakeholders, is delivered on time and within
budget.
•  Without a structured process for development of

software, the probability and severity of risk for
failure/bugs in the software increases.

KEY CONCEPTS:
ANALYSIS |DESIGN |CODE |TEST

•  Analysis/gather requirements
•  Design the software
•  Code/Implement the design
•  Testing of the code

SEQUENTIAL VS. OVERLAPPING
DEVELOPMENT

Source: “The New New Product Development Game”
by Takeuchi and Nonaka. Harvard Business Review,
January 1986.

Rather than doing all of
one thing at a time...

...Scrum teams do a little of
everything all the time

Requirements Design Code Test

WATERFALL (SEQUENTIAL)
VS AGILE (OVERLAPPING)

Waterfall (of tears)
Old NCEA Standards

•  Each phase in the
process is completed
before moving on to the
next.

•  There is little change
once the project design
phase is complete.

•  Software development
work completed in “silo”
environment.

•  Coders and testers work
in opposition.

Agile
New NCEA Standards

•  Each phase is completed
iteratively in a short sprint
of 2-weeks.

•  Flexibility is the key, so
that the software can be
changed if there is a
design issue or change to
requirements.

•  Software development is
completed in cross-
functional teams.

•  Coders and testers work
in tandem.

WHAT WE LEARNED AT ORION

•  Importance of user stories for requirements analysis
•  Importance of cross-functional teams:

Business Analyst, Coders, Testers, UX Designer
•  Use of SCRUM boards for visual planning
•  Breaking down software development into

manageable chunks via “sprint goals”
•  Importance of testing at each sprint and writing test

conditions for that sprint goal
•  Iterate until awesome!

HOW WE ARE IMPLEMENTING WHAT
WE LEARNED

•  Each student develops their project brief and tasks
in terms or user stories.
•  Each student has a scrum board for visual planning.
•  Each student must do a stand-up after a two week

sprint.
•  Testing is incorporated into each sprint cycle.

CLASSROOM IMPLEMENTATION
SCRUM BOARD

A3 Poster
for Initial Brief

SCRUM Board with user
stories and tasks

CLASSROOM IMPLEMENTATION
STAND-UPS

“Regular stand ups were also a feature of Agile which was
adopted in our projects. A presentation on the progress made
recently on each of our own projects was made to the rest of the
class weekly/fortnightly. Although this is designed to assist
teamwork and inter-team communication on progress state for
each other, this worked really well for out class in that it allowed
ourselves to understand more concretely the progress we were
making, just like the SCRUM boards did. Also, this allowed our class
as a whole to judge our progress in relation to one another, so that
a good indication of whether we were ahead or behind of
everyone else could be seen.

This also promoted teamwork, even though these were individual
projects, in that we were aware of the projects and progresses of
one another and so were able to encourage and help one
another if needed. In fact, we were so involved in each other’s
projects that a sort of ‘culture’ had developed, where every time
someone moves a task on the SCRUM board to the ‘complete’
section, we would all stop what we were doing and clap - because
we all understood the achievement of the completion of even just
one task.”

KEY IDEA: REQUIREMENTS ANALYSIS

•  Crucial to ascertain functional and non-functional
requirements before launching into a software
development project

•  However, it is often difficult for the stakeholders to
communicate what their requirements are

•  Furthermore, different stakeholder groups may have
conflicting requirements that need to be negotiated so
that the software suits a range of needs.

•  The hardware/physical environment that the software is
to be run on will need to be considered and may also
even change as the project develops.

•  Finally, requirements need to be revisited regularly and
the dialogue with stakeholders should be on-going.

•  Very strong correlation to NCEA brief development
standard at Level 3.

USER STORIES

•  16.2.1. PROJECT: FINDING THE REQUIREMENTS from
the CS Field Guide could be a useful guideline for
students who are developing their own project brief
and need to research a variety of stakeholders.
•  At this stage, it would be helpful to introduce the

concept of ‘User Stories’, which are used in AGILE
methodology:
•  A requirement should be written in the stakeholder’s

language and read like a user story: a story about how their
users interact with the software that is being developed.

•  Requirements must be stakeholder-oriented and are written
from the stakeholders’ perspective describing what the
software is going to do for the stakeholder.

USER STORIES

Excerpt from Head First Software Development (pg. 39)

USER STORIES

One format for user stories that we were introduced to at Orion
Health is:

	
 	

	
 As	
 a	
 ………	
 I	
 want……….	
 So	
 that	
 I	
 can………..	

Examples from student projects:
As a reader of the eBook
I want to be able to choose what decade to read
So I can skip to certain decades that I was in or have family and
friends involved with so I don’t have to go the through the whole
presentation to see it.

As a customer of the restaurant
I want to be able to narrow down dietary requirements (for
vegetarian and gluten free options)
So that I can determine if there is food that would agree with my
diet.

U
SE

R
 S

TO
R

IE
S

KEY CONCEPT: SOFTWARE DESIGN

•  “Software design is all about managing this
complexity and making sure that the software we
create has a good structure.” (Bell & Morgan, 2014)
•  Subdivision – breaking the software into small parts

that can be built independently.
•  This concepts works well with Agile methodology

and having small sprint goals.
•  Although students don’t generally work in teams,

they can still break the development into
subdivisions, e.g. creating a database back-end for
a website, creating a menu system, etc.

KEY CONCEPT: SOFTWARE DESIGN

• Abstraction –
breaking the
software into layers.
Each layer only
needs to know how
to communicate
with the layer
above it, but not
how it works.

Image from CS Field Guide, Software Engineering

KEY CONCEPT: SOFTWARE DESIGN

•  Although in the real world
teams would be working in
parallel on each layer, it is a
concept that can be applied
to independent student
projects.

•  They can use the concepts of
subdivision and abstraction to
break their projects into
manageable layers and
develop the design for the
various layers.

•  16.3.1. PROJECT: DESIGNING
YOUR SOFTWARE from the CS
Field Guide could be used with
the generic technology
standard 3.2 Conceptual
Design Development

Design User Interface to
determine if functionality meets

user stories’ requirements

Design logic and queries to
insert/delete/display data via

the interface

Design database structure

SCRUM BOARD

KEY CONCEPT: TESTING

•  Software must be tested before being released as clients
and end-users wouldn’t be happy with a product that is
full of bugs!

•  Some bugs can be very severe and cause harm or even
death, thus testing must be thorough, iterative and
planned.

•  Automated testing can be programmed to run
repetitively find the probability of a bug occurring.
Automated tests can also be run after each update to
determine if an update has caused a bug to occur.

•  Manual testing is also necessary. It may be exploratory
in nature and completed by a member of the
development team, or it may be carried out by an end-
user.

KEY CONCEPT: TESTING

Unit Testing is another key
concept of testing, meaning
that as each discrete portion
of the software is being
developed, it is tested as a
unit to reduce the complexity
of finding a bug in the final
code.

Integration testing takes place
once all the units have been
tested to determine if all the
parts work together properly
as a whole.

An example of unit test conditions within the
Orion process is shown here:

As a Collector (Phlebotomist / Nurse)
I want to be able to easily search for collections
So that I can easily locate those collections I want to reprint
labels for

Scenario: Collected orders are listed in the recent collections
screen sorted by date

Given a patient has had two orders collected

When I open the recent collection screen for that patient

Then the collections for those orders are displayed
And the most recent collection is displayed first

Scenario: Labels are not available for reprint once the
specimens have arrived at the lab

Given a patient has had an order collected
And the specimens from that collection have arrived at the
lab

When I open the recent collections screen for that patient

Then the collection is not displayed

KEY CONCEPT: TESTING

•  User Acceptance Testing is important to determine
if the software is meeting user/stakeholder
expectations.
•  Whilst unit/integration testing may reduce bugs, it

doesn’t guarantee that the software is what the
user actually needs.
•  Acceptance testing left until the last stage before

product release can be disastrous to software
projects.

“I also prefer Agile as it ensures a better result. It
means that I can change small things as they
come, making it more manageable than having a
lot of big things to be changed all at the end as I
would with waterfall. The constant testing and
feedback ensured that I would not overlook any
problems as they were constantly being reviewed
by me and my stakeholders. This ensured that I
had the best possible outcome in terms on not
only organization but fitness for purpose.

Rather than me working away at it then giving to
others to pick apart in the design and usability of it,
I worked with them and changed as the advice
came in. Often in waterfall there is conflict
between creators and testers and the testers job is
purely to pick out any small or large problems,
which could easily get frustrating. By taking the
agile approach, I opted to work with my
stakeholders, and I knew that at the end of the
day the project’s outcome had to fit what they
wanted. “

RESOURCES

Bell, T., & Morgan, J. (2014, March 25). Software Engineering.
 Retrieved March 1, 2013, from Computer Science Field
 Guide: http://www.cosc.canterbury.ac.nz/csfieldguide/
 teacherguide23012014/SoftwareEngineering.html

Pilone, D., & Miles, R. (2008). Head First Software Development.

 Sebastopol, CA, USA: O’Reilly Media.

Full Day Immersion Workshop at Orion Health (Christchurch) on
Agile Development (SCRUM)

ADInstruments (Dunedin) testing procedures presentation to
class and participation in testing process

Matthew Smart, University of Otago eLearning and eReseach
Consultant, presentation to class on software development

