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For years computer-based stochastic simulation has been a commonly used tool in the
performance evaluation of various systems. Unfortunately, the results of simulation
studies quite often have little credibility, since they are presented without regard to their
random nature and the need for proper statistical analysis of simulation output data.

This paper discusses the main factors that can affect the accuracy of stochastic
simulations designed to give insight into the steady-state behaviour of queueing processes.
The problems of correctly starting and stopping such simulation experiments, to obtain
the required statistical accuracy of the results are addressed. In this survey of possible
solutions, the emphasis is put on their possible applications in the sequential analysis of output
data, which adaptively decides about continuing a simulation experiment until the
required accuracy of results is reached. A suitable solution for deciding upon the starting
point of a steady-state analysis and two techniques for obtaining the final simulation
results to a required level of accuracy are presented, together with pseudo-cod

implementations.
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INTRODUCTION

Computer-based stochastic simulation, tradi-
tionally regarded as a last resort tool (if ana-
lytical methods fail), has become a valid and
commonly used method of performance evalu-
ation. This popularity is due to the continuing
development of more powerful and less expen-
sive computers, as well as significant achieve-
ments in software engineering. One can ob-
serve a trend towards integrating simulation
methodology with concepts and methods of ar-
tificial intelligence [Artificial Intelligence 1988].
Various user-friendly simulation packages of-
fer visual interactive capabilities; traditional
discrete-event simulation modeling is more and
more frequently supported by object and logic-
oriented programming and various concepts of
artificial intelligence [Bell and O;Kneefe 1987;

Gates et al. 1988; Jackman and Medeiros 1988;
Kerckhoffs and Vansteenkiste 1986; Knapp
1986; Oren and Zeigler 1987; Ruiz-Mier and
Talavage 1987; Stairmand and Kreutzer 1988;
Zeigler 1987]. All these developments offer users
increasingly powerful and versatile techniques
for performance evaluation, leading towards
automatic, knowledge-based simulation pack-
ages. Simulation programming techniques and
languages are discussed in numerous publica-
tions, including textbooks by Bulgren [1982],
Kreutzer [1986], Law and Kelton [1982], and
Payne [1982].

Applying simulation to the modeling and
performance analysis of complex systemscan
be compared to the surgical scalpel [Shannon
1981], whereby ”in the right hand [it] can ac-
complish tremendous good, but it must be used
with great care and by someone who knows



what they are doing”. One of the applications
where simulation has become increasingly popu-
lar is the class of dynamic systems with random
input and output processes, represented for ex-
ample by computer communication networks.
In such cases, regardless of how advanced the
programming methodology applied to simula-
tion modeling is, since simulated events are con-
trolled by random numbers, the results pro-
duced are nothing more than statistical sam-
ples. Therefore, various simulation studies, fre-
quently reported in technical literature, can be
regarded as programming exercises only. The
authors of such studies, after putting much in-
tellectual effort and time into building simula-
tion models and then writing and running pro-
grams, have very little or no interest in a proper
analysis of the simulation results. It is true that
"the purpose of modeling is insight, not num-
bers” [Hamming 1962], but proper insight can
only be obtained from correctly analysed num-
bers. Other modes of presenting results, for
example animation, can be very attractive and
useful when the model is validated, but nothing
can substitute the need for statistical analysis
of simulation output data in studies aimed at
performance analysis; see also Schruben [1987].

In the stochastic simulation of, for example,
queueing systems ”computer runs yield a mass
of data but this mass may turn into a mess.” If
the random nature of the results is ignored, ”in-
stead of an expensive simulation model, a toss

of the coin had better be used” [Kleijnen, 1979].
Statistical inference is an absolute necessity in
any situation when the same (correct) program
produces different (but correct) output data
from each run. Any sequence x1,xs,- - ,x, of
such output data simply consists of realisations
of random variables X1, Xo,---, X,;. Examples
illustrating this fact may be found in Kelton
[1986], Law [1982], Law and Kelton [1982a], and
Welch [1983, Sec.6.1] .

The simplest objective of simulation studies
is the estimation of the mean p, of an analysed
process from the sequence of collected observa-
tions x1,x2,- - ,T,, by calculating the average
as follows:

X(n) = -
i=1

T

(1)

Such an average assumes a random value, de-
pends on the sequence of observations. The ac-
curacy with which it estimates an unknown pa-
rameter p, can be assessed by the probability

P(IX(n) = pa| < Ag) =1-a
(2a)

P(Y(n)*Ax S,ux Sy(n)+Ax) = 1*04
(2b)
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where A, is the half-width of the confidence
interval for the estimator and (1 — «) is the
confidence level, 0 < a < 1. Thus, if the width
27, of the confidence interval is found for an
assumed confidence level of (1—a) and the sim-
ulation experiment were repeated a number of
times, the interval (X(n) — Az, X(n) + A)
would contain an unknown average u, in
100(1 — @)% of cases and would not in 100a%
of cases. It is well known that if observations
T1,T9, -+ , Ty can be regarded as realizations of
independent and normally distributed random
variables X1, X9, -+, X, then

Ay = tn—l,l—a/Qa-[Y(n)]? (3>

where

X ()] =)

{zi — X(n)}?
pat n(n—1)

(4)

is the (unbiased) estimator! of the variance of
X(n) , and t,_11_4/2 is the upper (1 — a/2)
critical point obtained from the t-distribution

2]

with (n—1) degrees of freedom. In other words,
for given 1 — /2, assuming the ¢-distribution
for the random variable T,_; (X(n) —
pz)/sigma[X (n)], we get that P[T,_; < t] =
I —a/2 for t = t,_11_q/2; see Figure 1 and
Appendix A. For this reason, ¢,_;1_4/2 is also
called the (1 — a/2) quantile, or percentile,
of the t-distribution with (n — 1) degrees of
freedom. For n > 30, the t-distribution can
be replaced by the standard normal distribu-
tion. In that case t,_1;_o/2 in Equation (3)
should be replaced by z;_,/2, which is the up-
per (1 — a/2) critical point obtained from the
standard normal distribution or, equivalently,
the (1 — a/2) quantile of the standard normal
distribution; see Appendix A. Commonly used
values of t,, 11 o2 and z;_,/p have been tabu-
larized and can be found in many textbooks;
see, for example, Trivedi [1982, Appendix 3,
and p.489]. (Warning: The definitions used for
obtaining tabularized values should always be
checked. For example, ¢,_11_n/2 and z1_q 2
are sometimes denoted as t,,_ /2 and z, /o, re-
spectively.)

Equation (3) can also be applied if the ob-
servations 1, xo, -+ , T, represent random vari-
ables which are not normally distributed. That
is, if the observations are realizations of inde-

! Following standard notation, & means an estimator of the parameter a.



pendent and identically distributed (i.i.d.) ran-
dom variables X1, Xo,---,X,,, then according
to the central limit theorem (see Appendix A),
the distribution of the variable X (n) tends to
the normal distribution as the number of col-
lected observations n increases. In practice,
Equation (3) gives a good approximation for
n > 100. Results obtained from Equations (1)
and (3) are called point and interval estimates,
respectively. Both of them are important: The
former characterizes the system analysed, and
the latter states the accuracy of the obtained
characteristics.

If observations x1,x2,--- ,x, cannot be re-
garded as realizations of i.i.d. random variables,
we have to consider some modifications to the
above estimators. This raises the problem of
measuring the quality of estimators. There are
three common measures of estimator effective-
ness :

1. The bias, which measures the systematic
deviation of the estimator from the true
value of the estimated parameter; for ex-
ample, in the case of X (n),

Bias[X(n)] = E[X(n) — ). (5)

2. The wvariance, which measures the mean
(squared) deviation of the estimator from
its mean value; that is,

o*[X(n)] = E{X (n) — E[X(n)]}?]. (6)

3. The mean square error (MSE) of the es-
timator, defined as

MSE[X (n)] = B{[X(n) — p?}.  (7)

Note that from these definitions,
MSE[X(n)]

— {BiasX()])? + *[X(n)].  (8)

The main analytical problem encountered in
the analysis of simulation results is that they are
usually highly correlated and thus do not satisfy
the precondition of statistical independence. If
observations x1,xs,--- ,x, represent an auto-
correlated and stationary sequence of random
variables X1, Xo,---,X,,, then the variance of
X (n) is given by the formula

n—1
[R(0) +2) (1 — =)R(k)]
o [(X(n)] = =L L)
where

R(k) = E[(Xz - Nm)(Xifk - ,ua:)]a

0<k<n-1 (10)
is the autocovariance of order k ( the lag k com-
ponent of the autocorrelation function R(k) )
of the sequence. The autocovariances defined
in Equation (10) are independent of the index i
due to the assumed stationarity of the analysed
processes. Note that the variance 02[X (n)] can
be reduced to R(0)/n, and consequently could
be estimated by Equation (4), if and only if the
observations are uncorrelated. Neglecting the
existing statistical correlation is equivalent to
removing all the components except R(0) from
Equation (9). Such an approximation is usu-
ally unacceptable. For example, in an M/M/1
queueing system with 90% utilization, the vari-
ance of the mean queue length calculated ac-
cording to Equation (9) is 367 times greater
than that from Equation (4), [Blomqvist 1967];
see Law and Kelton [1982a, p.146] for another
example. Any variance analysis disregarding
correlations among the observations would lead
either to an excessively optimistic confidence
interval for p,, in the case of positively cor-
related observations, or to an excessively pes-
simistic confidence interval for p, , in the case
of negatively correlated observations; see Equa-
tion (3). A positive correlation between obser-
vations is typical in simple queueing systems
without feedback connections and it is stronger



for a higher system utilization; see, for exam-
ple, Daley [1968] for correlation analysis of the
M/M/1 queue.

Generally, the analysis of variance of corre-
lated processes, and the analysis of their auto-
correlation functions in particular, is a complex
statistical problem and therefore creates a ma-
jor difficulty in the statistical analysis of sim-
ulation output data. In terminating (or finite-
horizon) simulation used for studying the be-
haviour of systems during specified intervals of
time, the above problem can be overcome by
making a number of independent replications
of the simulation experiment. In that case the
means of individual observations collected dur-
ing different simulation runs can be regarded as
a sequence of independent (secondary) output
data, and Equation (4) can be applied. Ex-
haustive discussions on the statistical analysis
of output data from terminating simulation can
be found for example, in Kleijnen [1979, 1987],
Law [1980], and Law and Kelton [1982a, Sec.
8.5].

In this paper, we discuss steady state (infi-
nite horizon) simulation, aimed to give insight
into the behaviour of queueing processes after a
long period of time. The methodology for this
kind of simulation study is much more compli-
cated. After launching, a queueing process is
initially in a nonstationary phase (warm-up pe-
riod). Then, if the process is stable, it moves
asymptotically towards a steady state (statisti-
cal equilibrium), although different parameters
usually tend to the steady state with different
rates. Since observations gathered during the
initial transient periods do not characterize the
steady state, a natural idea is to discard all such
observations before further analysis. This re-
quires an estimation of the effective length of
the initial transient period. Ignoring the ex-
istence of this period can lead to a significant
bias of the final results. On the other hand, the
removal of any observations increases the vari-
ance of estimates, which in turn can increase

the value of the mean-square error [Donnelly
and Shannon 1981; Fishman 1972; Turnquist
and Sussman 1977; Wilson and Pritsker 1978a).
Thus, a decision whether to delete or not to
delete initial observations depends on the as-
sumed criterion of goodness of the estimators.
This also affects methods used to collect obser-
vations, which are discussed in the next Section
1. These and other aspects of the problem of
initialization are presented broadly in Section
2.

Several methods of data collection and anal-
ysis has been proposed to overcome the theo-
retical problems that arise from the correlated
nature of observations collected during steady-
state simulation. We survey these methods in
Section 1. They are distinguished by the way
they estimate the variance of observed pro-
cesses; the estimate is needed for determining
the width of the confidence intervals. Usually,
the method impose special requirements on how
the output data from simulation experiments
should be collected and preprocessed, depend-
ing on whether they attempt to weaken or even
remove statistical dependencies among obser-
vations or take the actual correlations among
observations into consideration. Among them
one can distinguish:

e the method of independent replications
e the method of batch means

e the method of overlapping batch means
e the method of uncorrelated sampling

e the method of regenerative cycles

e the method based on spectral analysis

e the method based on autoregressive rep-
resentation

e the method based on standardized time
series
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Various approximations assumed during
statistical analysis of simulation output data
may bias both point and interval estimates.
For example, the final confidence interval
should theoretically contain the true value
of the estimated parameter with probabil-
ity (1 — a), or equivalently, if an experi-
ment is repeated many times, in (1—a)100%
of cases; but various difficulties in satisfy-
ing theoretical assumptions can cause the
real rate of the confidence intervals contain-
ing the true parameter to differ significantly
from (1 — a). The robustness of the above
methods of data collection and analysis is
usually measured by the coverage of con-
fidence intervals, defined as the frequency
with which the intervals (X (n) —A,, X (n) +
A,) contain the true parameter pu,, at a
given confidence level (1 —a), 0 < a < 1;
see Figure 2. Thus, the coverage analysis
can be applied only to systems with theoret-
ically well-known behaviour, since the value
of i, has to be known. Any analysed method
must be applied in a statistically significant
number of repeated simulation experiments
(usually 200 or more replications) to deter-
mine the fraction of experiments producing
the final confidence intervals covering the
true mean value of the estimated parameter.

The coverage error and its main sources
were theoretically analysed by Glynn [1982].
Kang and Goldsman [1985], and Schruben
[1980]. Generally, a given method of data
collection and analysis can be considered as
producing valid 100(1 — a)% confidence in-
tervals (for, say, the mean delay) if the up-
per bound of the confidence intervals for the
coverage is at least (1 — a). Otherwise, con-
fidence intervals for the estimated parame-
ter should be regarded as invalid and the
method as inaccurate. A few additional
measures for the effectiveness of methods
used for data collection and analysis were

proposed in Schruben [1981]. The weak-
est point of such approach is that there is
no theoretical basis for extrapolating results
found for simple, analytically tractable sys-
tems to more complex systems, which are
the real subjects of simulation studies; see
Fox [1978].

Some conclusions on the quality of the
methods can be also obtained from the anal-
ysis of the asymptotic properties of the vari-
ance estimators 62[X (n)] used by particular
methods for determining the width of confi-
dence intervals. Namely, the quality of vari-
ous variance estimators can be compared by
comparing the limit values of their bias,

Bias{6*[X (n)]}

= E{o*[X(n)] - o*[X(n)]}  (11)

and variance Var{*[X(n)]}, as the num-
ber of observations tends to infinity;that is,
as n — oo; see Goldsman and Meketon
[1985] and Goldsman et al. [1986]. Alter-
natively, Schmeiser [1982] proposed study-
ing the asymptotic properties of the ex-
pected values and variances of the halfwidth
of confidence intervals A, generated by a
method; see also Glynn and Iglehart [1985]
and Goldsman and Schruben [1984]. Fol-
lowing such criteria, one can say that the
method using the variance estimator with
the smallest bias and smallest variance, or
using the estimator of the width of confi-
dence interval having the smallest expected
value and smallest variance, is (asymptot-
ically) superior to others. Unfortunately,
these criteria are not universal since a small
bias can be accompanied by large variance
or vice versa. In terms of confidence inter-
vals, it can mean wide and very variable con-
fidence intervals giving good coverage, or,
conversely, stable and narrow confidence in-
tervals giving poor coverage.



Even if we were able to collect indepen-
dent and identically distributed output data
from simulation runs, we cannot be fully pro-
tected from erroneous conclusions because
of inherent variations of simulation output
data caused by the pseudorandom nature
of input data; see Pidd [1984, Sec.8.4.2] for
a more detailed discussion. Certainly, one
of the most important issues of any sim-
ulation experiment is to use proper input
data. In the case of queueing processes this
usually means selecting a good generator of
uniformly distributed (pseudo)random num-
bers. The state of art in this area is summa-
rized in Park amd Miller[1988].

The experimental accuracy of simulation
can be further improved by using wvariance
reduction techniques (VRT) developed for
reducing the variance of recorded results
without affecting their mean values. Sur-
veys of variance reduction techniques may
be found in Bratley et al. [1983, Sec.2],
Cheng [1986], Frost et al. [1988], Kleijnen
(1974, Ch.3], Law and Kelton [1982, Ch.11],
Nelson and Schmeiser [1986], Wilson [1983,
1984]. Although all of these techniques can
be applied to the method of independent
replications, only some of them can be fit-
ted into other methods of data collection
and aanlysis. Two VRTs, known as the
method of control variables (or control vari-
ates) and importance sampling, seem to be
the most frequently advocated; see, for ex-
ample Anonuevo and Nelson [1986], Frost
et al. [1988], Izydorczyk et al. [1984],
Lavenberg and Welch [1981], Lavenberg et
al. [1982], and Venkartraman and Wilson
[1985], for discussions of these methods and
their applications. Unfortunately, despite
the fact that various VRT's have been exten-
sively studied theoretically since the very be-
ginning of digital simulation [Harling 1958],
most of them have found only limited prac-

tical application. The reson is that they
can be difficult to implement in simulation
studies of even moderately complex systems,
since they are strongly model dependent
and /or require a substantial amount of com-
puting resources. The simplest VRT in the
context of queueing processes [Law 1975,
consists of a direct estimation of the mean
time in queue (without service time), since
this estimator usually has a smaller variance
than (direct) estimators of the mean time in
the system or the mean queue length. Next,
the estimates of the latter group of parame-
ters can be obtained indirectly by applying,
for example, Little’s formula. The efficiency
of this approach has been proved for G/G/c
queueing systems [Carson and Law 1980]. A
variance reduction as high as 90% has been
reported, although generally the reduction
tends to 0 as the system utilization tends to
100%. Indirect estimation has been found
justifiable even for more complex queue-
ing systems, provided that the interarrival
and waiting times are negatively correlated,
[Glynn and Whitt 1989]. Another VRT, for
achieving more stable confidence intervals by
reducing the variance Var{6?[X(n)]}, has
been proposed by Meketon and Schmeiser
[1984]. They showed that the variance re-
duction can be achieved by calculating es-
timators from overlapping subsequences of
output data; see the method of overlapping
batch means in Section 1.

The methods for data collection and
analysis can be used either in their fixed-
sample-size versions or in their sequential
versions. In the former case, statistical anal-
ysis is performed once at the end of the sim-
ulation experiment when a predetermined
number of observations, assumed to be suf-
ficient to get results of a required accuracy,
has been collected. The present survey of
methods for data collection and analysis,



used in steady-state simulation, focusses on
their sequential versions, in which the length
of simulation is increased sequentially from
one checkpoint to the next until a prespec-
ified accuracy of the point estimators is ob-
tained. Such procedures, which automati-
cally control the length of simulation exper-
iments, are very desirable in user-friendly
simulation packages. Sequential statistical
analysis is also more efficient, since it is usu-
ally difficult to determine a priori the length
of simulation needed by a fixed-size proce-
dure that would be sufficient to obtain a re-
quired width of confidence intervals at the
assumed level of confidence Law and Kelton
[1982b, 1984].

Among the few possible criteria for stop-
ping the simulation, probably the most use-
ful one is based on the relative (half) width
of the confidence interval at a given confi-
dence level (1 — a) defined as the ratio

Az
X(n)

0<e<l; (12)

€ =
c.f. Equation (2).

The above ratio is also called the rela-
tive precision of the confidence interval. The
simulation experiment is stopped at the first
checkpoint for which € < €,,4., Where €4,
is the required limit relative precision of the

results at the 100(1 — a)% confidence level,
0 < €mar < 1. Note that if

-«

< PIX(n) - <X, (13)
then, for pu, # 0,
P[IX(n) = pa| < ] X(n)]]

= P[IX(n) — po| < €| X (1) = 10 + pra]

< PIX(n) — ol < e[ X(n) = pial + el
and finally
1 —a < PlX(n) - | < el X(n)]]

X) -l _ e

<P < ;
|/*Lz| l—e

(14)

where

|
is called the relative error of the confidence
interval.
Sequential reasoning about the statistical ac-
curacy of results is particularly advisable
if higher precision is required. There is a
danger, however, since when precision re-
quirements are increased, the resulting con-
fidence intervals have a greater chance of
not containing the true value of parame-
ters (the narrower the confidence interval,
the worse the coverage effect). One can also
expect that lower coverage is more proba-
ble in the case of negatively correlated ob-
servations for which it is more likely to get
an underestimated value of their variance.
Higher accuracy requirements can also unac-
ceptably lengthen simulation runs controlled
by a sequential procedure. In this context,
any variance reduction technique can be re-
garded as a technique for speeding up the
simulation, since any decrease in the value
of the variance decreases the width of the re-
sulting confidence intervals, and a specified
accuracy can be met more quickly.
The sequential approach is regarded by
some as the only alternative to steady-state
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simulation, see Bratley [1983, p.101]. Some
statisticians believe that it is possible to de-
vise a procedure that would fully automat-
ically conduct data collection and analysis
using a sequential rule for assessing the ac-
curacy of estimates; however, a fully accept-
able solution has not yet been invented. Rel-
atively few commercially available simula-
tion packages offer some degree of automa-
tion of statistical analysis; c.f. Catalog of
Simulation Software [1987]. For example, se-
quential procedures, automated to some ex-
tent and based on independent replications,
regenerative, and spectral methods of data
collection and analysis are implemented in
Research Queueing Package (REQS), [Mac-
Nair 1985; Sauer et al. 1984], and in its net-
work oriented extension Performance Evalu-
ation Tool(PET) [Bharath-Kumar and Ker-
mani 1984]. A method of batch means is in-
corporated in SIMSCRIPT ILI.5 [Mills 1987]
and its specialized variations such as Net-
work I1.5 and COMNET IL.5. Partial au-
tomationm of data analysis is also offered in
Queueing Network Analysis Package Version
2 (QNAP2) [Potier 1984, 1986].

The effectiveness of proposed methods
generally depends on the level of a pri-
ori knowledge of the system’s behaviour.
Successful fully automated implementations
have been reported only for some restricted
classes of queueing processes. A fully au-
tomated procedure that could be used in
stochastic simulation studies of a broader
class of systems by users having little knowl-
edge or interest in the statistical analysis of
the output data is a matter for future in-
vestigation. The quality of presently known
methods depends on the selection of values
for the various parameters involved, which
requires some knowledge of the analysed sys-
tems’ dynamics. In Section 3 we present de-
tails of two sequential procedures for data

collection and analysis which were imple-
mented in simulation studies of data commu-
nication protocols reported in Asgarkhani
and Pawlikowski [1989] and Pawlikowski and
Asgarkhani [1988].

This report is not addressed to statis-
ticians. We try to avoid the strict mathe-
matical formulation of the problems and use
basic statistical terminology. Readers are
referred to the references for more details.

1 METHODS OF DATA COLLECTION
AND ANALYSIS

During the last 25 years of discussion on the
methodology of statistical analysis of out-
put data from steady-state simulation, ini-
tiated by Conway’s [1963] ”"Some Tactical
Problems in Digital Simulation,” a variety of
methods for data collection and analysis has
been proposed to circumvent the nonstation-
arity of simulated queueing processes (espe-
cially the initial nonstationarity caused by
the existence of the initial transient period)
and the autocorrelation of events (correla-
tions among collected observations). As has
been mentioned, these methods either try to
weaken (or remove) autocorrelations among
observations or to exploit the correlated na-
ture of observations in analysis of variance
needed for determining confidence intervals
for the estimated parameters.

In the method of replications,
adopted from terminating simulation, the
problem with autocorrelated nature of the
original output data is overcome in a con-
ceptually simple way: The simulation is re-
peated a number of times, each time using
a different, independent sequence of random
numbers, and the mean value of observa-
tions collected during each run is computed.
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These means are used in further statistical
analysis as secondary, evidently independent
and identically distributed, output data. By
the central limit theorem (see Appendix A),
such data also become approximately nor-
mally distributed. Following these motiva-
tions, if m observations are collected dur-
ing each replication, the sequence of n pri-
mary observations from k, = n/m replica-
tions (11, 12, ** , T1m), (T21, a2, ++ , Tam),
R (.kal, Trb2, """ ,l’kbm) is replaced
by the sequence of their means
X1(m), X2(m), -+, Xp(m), where

m
53
m 4 7
Jj=1

which are used to obtain the point and inter-
val estimates of the process. Namely, adopt-
ing Equations (1)-(4), we get the estimator
of the mean p, as

(16)

X(ky,m) = kinmm), (17)

which, fgr n = kym is numerically equiva-
lent to X (n). We also set the 100(1 — a)%
confidence interval of u, as

X (p,m) £ ty—11—/20 (X (kp,m)],  (18)
where
62X (ky.m)]
k:bm 2
Z kbkb_(l) )

is the estimator of the variance of X (ky, m),
and tp,_11-a/2, for 0 < a < 1, is the
upper (1 — a/2) critical point from the ¢-
distribution with k, — 1 degrees of freedom.

There are different opinions on the ef-
fectiveness of this method as compared to
other methods of data collection and analy-
sis, all of which are based on a single (longer)
run of the simulation experiment. Argu-
ments defending the method of replications
are provided by the results of Kelton and
Law [1984], Lavenberg [1981, p. 114], and
Turnquist and Sussman [1977], which reveal
that better accuracy of the point estima-
tor measured by its MSE [see Equation (7)]
can be achieved if the simulation is run a
few times rather than if it is run only one
time . But Cheng [1976] argues that such
a policy cannot always be correct; see also
Madansky [1976]. On the other hand, the
method of replications appears to be much
more sensitive to the nonstationarity of ob-
servations collected during the initial tran-
sient period than methods based on single
simulation runs, since any new replication
begins with a new warm-up period. If the
bias of the estimator X (k,,m) is our main
concern, then data collected during the ini-
tial transient period should be discarded,
(see Section 2), and in Equation (17) X;(m)
should be replaced by

Xi(m —ny) =

5 Tij,

J=noi+1

(20)

O

where n,; is the number of observations
discarded from the i;h replication. Thus,
the total number of initial observations dis-
carded from k;, replications would be about
ky—1 times larger than in corresponding sin-
gle run methods. In the sequential version
of the method, new replications are gener-
ated until the required accuracy is reached.
It was found that proper estimation of the
length of the initial transient period can sig-
nificantly improve the final coverage of con-
fidence intervals obtained by the method of
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replications. There is a trade-off between
the number of replications and their length
for achieving a required accuracy of estima-
tors. Fishman [1978, p. 122] suggests using
at least 100 observations in each replication
(i.e., m —n, > 100) to secure normality of
the replication means. Moreover, results of
Law [1977] and Kelton [1984] show that it
is better to keep replications longer than to
make more replications, since that will usu-
ally improve the final coverage too.

All other methods of data collection and
analysis have been developed for obtaining
steady-state estimators from single simula-
tion runs rather than from multiple replica-
tions. In the method of batch means,
first mentioned by Blackman and Tuckey
in [1958] and Conway et al. [1959], the

recorded sequence of n original observa-

tions w1, Tg, - - - , x, is divided into a series of
nonoverlapping batches (11,12, , T1m),
(91, oo, **+ , Tom), « -, of size m, and batch

means X 1(m), Xo(m),--+, Xy, (m), corre-
sponding to the means over replications from
Equation (16), are next used as (secondary)
output data in statistical analysis of the sim-
ulation results. The mean p, is estimated
by X(n) = X(ky,m) [see Equation (17)],
and the confidence interval is given by Equa-
tions (18)-(19), and with k, meaning now
the number of batches and m meaning the
batch size, k, = n/m. This approach is
based on the assumption that observations
more separated in time are less correlated.
Thus, for sufficiently long batches of obser-
vations, batch means should be (almost) un-
correlated; see Brillinger [1973] for a for-
mal justification. By the central limit theo-
rem (see Appendix A), batch means can also
be regarded as approximately normally dis-
tributed, which justifies the application of
Equation (18). If the bias of the estimator

X (ky, m) is our main concern, then again the
effective length of the initial transient pe-
riod should be determined (see Section 2),
and the first n, observations collected during
this period should be deleted. Thus, the di-
vision of observations into kj; batches of size
m should begin with setting z11 = x,,,41.

Selection of a batch size that ensures un-
correlated batch means appears to be the
main problem associated with this method.
Another problem is selecting a suitable
length of the initial transient period. A nat-
ural solution is to estimate correlation be-
tween batch means starting from an initial
batch size m,, and if the correlation cannot
be ignored, increase the batch size and re-
peat the test. At this stage, the method
in its sequential version requires two pro-
cedures: the first sequentially testing for
an acceptable batch size and the second se-
quentially testing the accuracy of estimators.
Correlation between the means of batches of
size m can be measured by estimators of the
autocorrelation coefficients

A

. _ R(k,m)
7(k,m) = R0.m) (21)
where
Rikm) = 5 3 [Xatm)
—X(n)|[Xi—x(m) = X(n)]  (22)

is the estimator of autocovariance of lag,
k= 0,1,2,---, in the sequence of batch
means X1(m), Xo(m), -+, Xy, (m). The se-
quence of batch means can be regarded as
non-autocorrelated when all 7#(k,m),k =
1,2,---, assume small magnitudes, say, if
they are less than 0.05.

One can also determine the threshold for

neglecting the autocorrelations in a statis-



1 METHODS OF DATA COLLECTION AND ANALYSIS 13

tical way, by testing their values at an as-
sumed level of significance; see Adamn [1983]
and Welch [1983, p. 306]. The main an-
alytical problem is caused by the fact that
7(k,m)’s of higher order are less reliable
since they are calculated from fewer data
points?. The higher the lag of an autoco-
variance, the fewer the observations avail-
able to estimate this autocovariance within
a batch. Usually it is suggested to consider
autocovariances of the lag not greater than
25% of the sample size [Box and Jenkins
1970, p. 33] or even of 8 -10% (c.f., Geisler
[1964]). Law and Carson [1978] have pro-
posed a procedure for selecting the batch size
for processes with autocovariances monoton-
ically decreasing with the value of the lag;
see also Law and Kelton [1982a]. In such
a case, only the lag 1 autocorrelation has
to be taken into account. In this proce-
dure three types of behaviour of 7#(1,m) as
a function of m are distinguished. In the
same class of processes Fishman [1978b] has
proposed testing batch means against au-
tocorrelation using von Neumann’s [1941]
statistic. One version of Fishman’s proce-
dure can be applied to processes with posi-
tive values of 7(1,m), which decrease mono-
tonically with m, whereas another includes
cases when 7(1,m) is a function oscillating
in a damped harmonic fashion, assuming
both positive and negative values [Fishman
1978, p. 240]. A sequential procedure using
the former version together with the control
variates variance reduction technique is pre-
sented in Anonuevo and Nelson [1986].

In this procedure observations are
batched not by count but by time, that
is, over equal time intervals, whose length

is specially selected, giving uncorrelated se-
quence of time means over the intervals.

Procedures proposed for selecting the
batch size m* use various statistical tech-
niques and various criteria, hence they usu-
ally lead to very different batch sizes. The
statistical tests involved typically require
many more batch means to be tested against
autocorrelation than is needed for getting
results with a required precision. Conse-
quently, it has been reported that some of
these procedures can lead to interval es-
timates with very poor coverage, caused,
among other reasons, by accepting batch
sizes that are too small. For example, the
above-mentioned Fishman’s procedures can
select batches of as few as eight observa-
tions. Law [1983] refers to simulation stud-
ies of M/M/1 queues in which the method
of batch means with the procedure proposed
in Law and Carson [1979] was used. Using
ky, = 10 batches of size m = 32, for system
utilisation p = 0.9, and 500 repeated sim-
ulation experiments, the achieved coverage
of the nominal 90% confidence intervals was
only 63%. For these reasons, Kleijnen et al.
[1982] suggest the use of a modified Fish-
man’s procedure accepting batches at least
100 observations long, whereas Welch [1983,
p. 307] recommends constructing batches at
least 5 times larger than the size m* given by
a test against autocorrelation, provided that
at least 10 such batches can be recorded.

Schmeiser [1982] theoretically analysed
the trade-off between the number of batches,
the batch size, and the coverage of confi-
dence intervals. The results show that usu-
ally the number of batches used in the anal-
ysis of confidence intervals should be not less

2 The variance of the estimator R(k, m) is reduced if the factor 1/(ky — k) in Equation (22) is replaced
by 1/ky. But this variance reduction is followed by an increase of the bias of the estimator; see Parzen

[1961]
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than 10, and need not be greater than 30, if
the simulation run is long enough to secure
an adequate degree of normality and inde-
pendency of batch means. This means that
having determined a batch size that gives ne-
glegibly correlated and approximately nor-
mal batch means (which can sometimes re-
quire even a few hundred batches to be
tested), there is no need to use more than
ky = 30 batches to obtain confidence in-
tervals with a good coverage. Thus confi-
dence intervals can be analysed constructing
a smaller number of longer batches. Such a
transformation improves the normality and
independence of batch means and, as such,
usually yields better coverage of the confi-
dence intervals. Although the problem of se-
lecting a suitable batch size has not yet been
satisfactorily solved, the above method of
batch means generally behaves better than
the method of replications [Law 1977] and is
quite often applied in practice. An example
of its sequential version, offering automated
analysis of simulation output data, is pre-
sented in Section 3.

As mentioned in Introduction, to gen-
erate short and stable confidence intervals
an estimator of variance o?[X(n)|] should
have a small variance itself. The theory
of statistics says that this requirement is
equivalent to using variance estimators with
high degrees of freedom, since the num-
ber of degrees of freedom is inversely pro-
portional to the variance of such estima-
tors. Meketon and Schmeiser have shown
that the variance of the variance estima-
tor can be reduced by introducing overlap-
ping batches of observations, [Meketon 1980;
Meketon and Schmeiser 1984]. This solu-
tion is applied in the method of over-
lapping batch means, a modification of
the previous method, which in this context
is known as the method of nonoverlapping

batch means.
Following Meketon and Schmeiser, the
variance of X (n) is estimated as

ool X (n)] = (5 = 1)~
where _
Xjm) = mz__; o 0

is the batch mean of size m beginning with
the observation x;, and X(n) is the over-
all mean, averaged over all observations, [see
Equation (1)]. Then the confidence interval
can be approximated as

X(n) £t1_as20m[X(n)], (25)
where t1_,/2 is the upper (1 — a/2) crit-
ical point of the t-distribution with , =
1.5([n/m] — 1) degrees of freedom; |a]| de-
notes the "floor” function of a, the great-
est integer not greater than a. Thus the
number of degrees of freedom is 1.5 times
greater here than in the method of nonover-
lapping batch means [c.f. Equation(18)],
with k, = n/m nonoverlapping batches. It
can be proved that if each new observation
starts the next batch of observations, then,
assuming the same batch size m, the method
of overlapping batch means gives asymp-
totically (as ntooo) more stable confidence
intervals, since the variance of 62[X(n)]
equals 2/3 of the variance of 62[X (ky, m)]
for nonoverlapping batch means, [Meketon
and Schmeiser 1984]. The bias of both vari-
ance estimators remains practically the same
[Goldsman et al. 1986]. It has been shown
that even overlapping batches only by half
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of their size gives an asymptotic variance
of 62[X(n)] equal to 75% of the variance
of the estimator calculated from nonoverlap-
ping batches with the same batch size [Welch
1987]. An important feature of this tech-
nique is that it makes it possible to increase
the size of batches within a given length of
simulation run without decreasing the num-
ber of batches. All of this makes the esti-
mator given by Equation (23) quite attrac-
tive, despite it being computationally more
complex, although it remains computation-
ally tractable. The optimal batch size for
this estimator (and for others), in terms of
its asymptotic mean square error, was anal-
ysed by Goldsman and Meketon [1989] and
Song [1988].

Since the method of batch means was
originally invented to obtain less correlated
data, discarding some observations between
consecutive batches should be a natural and
effective way to obtain additional decrease
in the correlation between batch means. An
extreme solution is applied in the method
of uncorrelated sampling in which only
single observations, each of v observations
apart, are retained and all other observations
are discarded; see Schmidt and Ho [1988]
and Solomon [1983, p. 200]. The distance
between consecutive retained observations
should be selected large enough to make the
correlation between them negligible. When
this is done and the initial n, observations
from the transient period are discarded,
the sequence of K retained observations
Trig41s Trgtotls " s Tpgt (K—1)w41 CONtAINS re-
alizations of (almost) independent and iden-
tically distributed random variables. Thus,
the mean p, can be estimated by

=

— 1

XuslK) = 2 3 (20)

xno—kiv—l—l .

Il
o

Its confidence interval is

Yus([() + thl,lfa/Qa—us[Xus(K)]v (27)
where
K-1 ~
e vt — X (K
2 X K)] = {mno-i-w—I—l us

(28)

and tx_11-q/2 is the upper (1 —«/2) critical
point obtained from the ¢-distribution with
(K —1) degrees of freedom. The size v of sep-
arating intervals can be selected sequentially,
applying the same tests as for determining
the batch size in the method of (nonover-
lapping) batch means, although one can ex-
pect that the size of intervals used for re-
moving correlations between individual ob-
servations will usually be smaller than the
batch size required for making batch means
uncorrelated. In the example considered in
Solomon [1983], the separating intervals of
length v = 25 were selected by applying the
Spearman rank correlation test. No results
on effectiveness of this method are available,
but some consider that it wastes too many
observations. In fact, as shown by Conway
[1963], the benefit of introducing the sepa-
rating intervals is doubtful since it increases
the variance of estimates. Let us also note
that one of the reasons for batching obser-
vations is to make them more normally dis-
tributed. Thus, Equation (27) can give quite
a poor approximation to the confidence in-
terval if the analysed process is not a normal
one.

In the regenerative method observa-
tions are also grouped into batches, but the
batches are of random length, determined by
successive instants of time at which the sim-
ulated process starts afresh (in the proba-
bilistic sense), that is, at which its future
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state transitions do not depend on the past.
In the theory of regenerative processes (see,
e.g., Shedler [1987]), which gives the theoret-
ical support for this method, such instants of
time are called regeneration points, and the
states of the processes at these points are
called regeneration states. The special na-
ture of the process behaviour after each re-
generation point—its fresh rebirth—causes
batches of observations collected during dif-
ferent regenerative cycles (i.e., within peri-
ods of time bounded by consecutive regen-
eration points) to be statistically indepen-
dent and identically distributed. So are the
means of these batches. For example, the
regeneration points in the behaviour of sim-
ple singleserver queueing systems are clearly
the time instants at which newly arriving
customers find the system empty and idle.
From any such moment on, no event from
the past influences the future evolution of
the system. More examples are given in
Welch [1983, p. 317 and Shedler [1987, Sec.
2.1]. Note that usually a few, or even in-
finitely many, different sequences of regen-
eration points (for different types of regen-
eration states) can be distinguished in the
behaviour of a system.

As a consequence of the identical distri-
butions of output data collected within con-
secutive regenerative cycles, the problem of
initialization vanishes if a simulation exper-
iment commences from a selected regener-
ation point. The regenerative method was
first suggested by Cox and Smith [1961, p.
136], then independently developed by Fish-
man [1973b, 1974], and by Crane and Igle-
hart [1974, 1975a]. Because of the random
length of batches, these methods require spe-
cial estimators, usually in the form of a ra-
tio of two variables. In particular, if ob-
servations x1, xs, - - - , T, are collected during
N consecutive regenerative cycles, then the

mean . of the observed process is estimated

- Y(N
X,.(v) - 29 (29)
T(N)
where
N
- Y,
YN =3 5 (30
i=1
N
= T; .
TV =3+ (31)
i=1
In the above equations,
Ti = nip1 —n; (32)

is the length of the i;h regenerative cycle
or, equivalently, the number of observations
collected during the cycle 7,n; is the serial
number of an observation collected at the
ith regeneration point, and

ni+1—1

J=ni

(33)

Thus Yj is the sum of observations collected
during the i;h regenerative cycle. If suffi-
ciently many regenerative cycles is recorded,
then the 100(1 — a)% confidence interval of
unknown parameter p, is bounded by

Xpe(N) # 21-a/267e[Xre(N)], (34)

where 21_,/5 is the upper (1 — a/2) critical
point from the standard normal distribution,
and

G2 [ Xre(N)]

(5?/ - QYTE(N)SYT + [yre(N)]QS%)

T(N)VN ’
(35)
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- (- Y(HT - T(N)}
SyT = ; (N —1) )
(37)

It can be shown that X,.(N) given by
Equation (29) is a biased estimator of p,
(the mean value of the ratio of two vari-
ables is approximated by the ratio of their
mean values, which generally is not cor-
rect), although it is a consistent estimator,
which means that X,.(N) tends to p, with
probability 1, as Ntooco. Additionally, the
asymptotic normality of the ratio estima-
tor X,.(N), on which the formula given by
Equation (34) is based, is questionable even
for relatively large N. Thus this method
eliminates the bias of initialization but in-
troduces new sources of systematic errors
caused by special forms of estimators. Some
efforts have been made to obtain less biased
estimators than those of Equations (29) and
(34). Less biased estimators of p, have been
proposed in Fishman [1977] (Tin’s estima-
tor), [Iglehart 1975] (the ”jackknife” estima-
tor) and Minh [1987]. Comparative stud-
ies reported in Gunther and Wolff [1980],
Iglehart [1975, 1978], and Law and Kelton
[1982b] show that using the jackknife ap-
proach for the mean and variance estimation
can significantly improve the accuracy of the
estimates, although some question the gen-
erality of these results [Bratley 1983, p. 92].
In some reported cases, especially if a small
number of regenerative cycles is recorded,

the performance of the regenerative method
appears to be poor indeed, worse than that
of the method of (nonoverlapping) batch
means (see Law and Kelton [1982b, 1984]).

An effective sequential, regenerative pro-
cedure for output data analysis has been
proposed by Fishman [1977]. Because of
reservations about the appropriateness of
the assumption of the approximate normal-
ity of X,.(N), the procedure is equipped
with a statistical test for normality of the
collected data (the Shapiro-Wilk test; see
Shapiro and Wilk [1965] or Bratley et al.
(1983, App. Al). This normality test requires
grouping output data (means over observa-
tions collected during consecutive regener-
ative cycles) into fixed size batches. Fish-
man [1977] proposed using batches contain-
ing data collected during at least 100 cy-
cles and increasing the size of batches if
the normality test fails. Results presented
in Law and Kelton [1982b] show that this
method, although rather more complicated
numerically because of testing for normal-
ity, produces more accurate results in com-
parison with both a sequential ”plain” re-
generative method proposed by Lavenberg
and Sauer [1977] and a sequential method
of (nonoverlapping) batch means proposed
by Law and Carson [1979]. A sophisticated
modification of the regenerative method was
also proposed by Heidelberger and Lewis
[1981], who suggest interactive intervention
by users in the process of data collection
and analysis for achieving better accuracy.
The regenerative method of data collection
and analysis requires a regeneration state to
be well chosen so as to ensure that a suf-
ficient number of output data can be col-
lected for statistical analysis. To satisfy
this requirement, a few approximations to
the method have been proposed; see Crane
and Iglehart [1975b], Crane and Lemoine
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[1977], Gunther and Wolff [1980], Heidel-
berger [1979]. Gunter and Wolff [1980] pro-
posed replacing single regeneration states by
sets of states and defining (almost) regener-
ative cycles bounded by entries of the sim-
ulated process to such sets of states rather
than to a single regeneration state as in the
original method. Such modification can lead
to even better accuracy of results than that
obtained by the original (accurate) regener-
ative method, at least in the cases reported
in Gunther and Wolff [1980]. But users
must still select a proper set of (almost) re-
generative states, which can sometimes in-
volve substantial preparatory work. This ap-
proach certainly deserves to be more thor-
oughly compared with others. On the other
hand, selecting the most frequently occur-
ring regeneration state does not guarantee
the best quality of the estimator. For exam-
ple, Calvin [1988] has shown that such a se-
lection may even result in the estimator with
the largest variance. Thus, a general crite-
rion for selecting regeneration states still re-
mains an open question. The random length
of regenerative cycles makes the control of
the accuracy of results more difficult, since
stopping the simulation at a nonregenerative
point can cause a substantial additional bias,
[Meketon and Hiedelberger 1982|. Any vari-
ant of the regenerative method offers very at-
tractive solution to the main ”tactical” prob-
lems of stochastic simulation, but it requires
a deeper a priori knowledge of the simulated
processes.

As has been said, one can also try to
take into account the correlated nature of
observations when the variance, needed for
the analysis of confidence intervals, is esti-
mated. The simplest, but usually heavily
biased, estimator of the variance 62[X (n)]
can be obtained directly from Equation (9).
Namely,

X ()
= % R(0) +2n21 (1 — %) R(k)|, (39)
where .
R(k) = 15
Y =Xl - X)), (@0

i=k+1

for 0 < kK < n — 1. This estimator can be
improved by discarding R(k)’s of higher or-
der since, as has been mentioned discussing
the problem of selecting the batch size in
the method of batch means, they are less
reliable because they are calculated from
fewer data points. Since the above formulas
assume that the analysed observations are
taken from a stationary process, the estima-
tion should be forwarded by detecting the ef-
fective length of the initial transient period
to discard initial nonstationary data.

The serial correlation of observations col-
lected during simulation experiments is more
effectively exploited in the method based
on spectral analysis, first proposed by
Fishman [1967] and Fishman and Kiviat
[1967]. The method assumes that obser-
vations represent the stationary and au-
tocorrelated sequence X, Xo,---,X,, and
shifts their analysis into the frequency do-
main by applying a Fourier transformation
to the autocorrelation function {R(k)}, k =
0,1,2,---, yielding the spectral density func-
tion,

pa(f) = R(0) +2 Z R(j)cos(211f3), (41)

for —oo < f < 400 [Brilliinger 1981; Jenk-
ins and watts 1968].
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Note that because of the randomness of
the collected observations, the spectral den-
sity function is a random function too. Com-
paring Equations (41) and (9) one can see
that, for sufficiently large n,
(X)) = 20,

n

(42)

Thus, the estimator of 0?[X(n)] can be ob-
tained from an estimator p,(f) at f =
0. Several techniques have been proposed
for obtaining good estimators of the spec-
tral density function p,(f). Most of them
follow classical techniques of spectral es-
timation based on the concept of spectral
windows (special weighting functions intro-
duced for lowering the final bias of the es-
timators) [Fishman 1973a, 1987a; Jenkins
and Watts 1968; Marks 1981]. It can been
shown that applying a modification of the
so-called Bartlett window gives an estimator
of the variance from Equation (42) equiv-
alent to that from the overlapping batch
means, [Damerdji 1987; Welch 1987]. The
best results in the sense of coverage were
reported by applying the so-called Tukey—
Hanning window [Jenkins 1968; Law and
Kelton 1984]. Using this approach, one can
determine the confidence interval of p,

X(n) £ty /205X (n)], (43)
assuming
o X =20

and tj1-q/2 as the upper (1 — «/2) critical
point of the t-distribution with ; degrees of
freedom. The value of, depends here on the
ratio of n/kpez, Where kp,q, is the value of
the upper lag considered in the autocorrela-
tion function R(k)[Bratley et al. 1983,p. 97;

Fishman 1973al. This approach can some-
times produce quite accurate final results
(see Law and Kelton[1984]), but it cannot be
regarded as a good candidate for a more user
friendly implementation because of its rather
sophisticated nature. In particular there is
no definitive method for choosing the param-
eter i, [Bratley 1983, p.97; Fishman 1978a, p.
265; Law and Kelton 1984].

The usefulness of spectral windows in
reducing the bias of the estimate p,(0)
has been questioned in Duket and Pritsker
[1978], Hiedelberger an dWelch [1981a,
1981b], Wahba [1980]. The last three pa-
pers propose estimating p,(0) from the pe-
riodogram {m(j/n)}, 7 =0,1,---, of the se-
quence of observations x1,xg9, -+ ,x,. This
periodogram is a function of the discrete
Fourier transforms {A.(j)} of the observa-

tions xy, x9, - - - , T,, namely,

jy_ AP
(=) = —— 4

()= (45)

and

, “ 2mi(s — 1)j
Ai) = Y e | -] )
s=1

where? i = /—1. It can be shown that for
0<j<n/2

Pz | — ~
n

To find an unbiased estimate of p,.(0) the
periodogram is transformed into a smoother
function, namely, into the logarithm of the
averaged periodogram

(35) en ()]} o

(47)

L(f;)

1
:l —
09{2

3 The symbol i has this special meaning only in Equation 46
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for f; = (47 — 1)/n. Next, this smoother
function (but still not the smoothest one)
is approximated by a polynomial to get its
value at zero. The whole approach is dis-
cussed in detail in Hiedelberger and Welch
[1981a] together with a method for calcu-
lating 4, the number of degrees of freedom
needed in Equation (43); see also the Ap-
pendix B. Despite a number of approxima-
tions involved, the method produces quite
accurate results, in particular in terms of
coverage.

Heidelberger and Welch [1981a] proposed
a sequential version of their method that
uses a limited number of (aggregated) out-
put data points instead of a growing num-
ber of individual observations, since, as they
show, both individual observations and their
batch means (of arbitrary size) can be used
in the variance analysis. Namely, if n ob-
servations are grouped into b batches* of m
observations each, then for n = bm
pe(0) _ Pon(0) "

n b

where, for —oo < f < +00,

pY(m)(f) = R(0,m)
+2 Z R(j,m)cos(211j f) (50)

is the spectral density function of
the autocorrelation function R(k,m)(k =
0,1,2,---) of the batch means; see Equation
(22). This insensitivity of the method to
batching the observations allows the batch
size to be increased dynamically (starting
from m = 1), keeping in memory only a lim-
ited number of the batch means. A special

batching/rebatching procedure is presented
in Heidelberger and Welch [1981a, 81b]. It
appears to be an efficient way of limiting the
required memory space. A modified version
of this method is presented in Section 3. The
method has demonstrated a good coverage of
confidence intervals in various applications,
even if data are collected asynchronously in
time [Asgarkhani and Pawlikowski 1989], de-
spite claims based on the basic assumption
of discrete Fourier transformation, that it
should be applied only in simulation experi-
ments in which observations are collected at
equally spaced time intervals [Bratley et al.
1983, p. 96].

Another approach for estimating the
variance of correlated observations collected
during a single simulation run is applied
in the method based on autoregres-
sive representation developed by Fish-
man [1971, 1973a, 1978a]. Again it is as-
sumed that after having decided about ob-
servations gathered during the initial tran-
sient period, the analysed sequence of obser-
vations 1,2, -+ ,x, represents a station-
ary process. The main assumption of the
method is that such a sequence of originally
correlated observations can be transformed
into a sequence of independent and identi-
cally distributed random variables, called its
autoregressive representation. The autore-
gressive representation Ygi1, Ygt+2, " s Yn Of
order ¢ is defined by the transformation

q

Yi = Z x(Tiok — Ha),

k=0

(51)

fori=q+1,q+2,---
[Fishman 1978], that

,n. It can be shown,

Ely;] = 0, (52)

4 The symbol b, instead of kj, is used here to emphasize the insensetivity of the method of the number

of batches.
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E[Y (n—q)]

= > G~ R -l ()

i=q+1 (n—

and

o*[Y (n — q)] = C?0g,[X (n)], (54)

where ¢ = ¢y + ¢ + ... + ¢cgc0 = L
o?[Y(n — q)], as the variance of the mean
of i.i.d. random variables, can be estimated
using Equation (4), provided the coefficients
q,c1,C2, -+, ¢4 are known. The correct au-
toregressive order ¢ can be determined by
examining the convergance of the distribu-
tion of a test statistic to an F' distribution
(also known as the Fisher distribution, or the
Snedecor distribution, or the variance-ratio
distribution)[Bratley 1983; Hannan 1970, p.
336] or to a x? distribution [Fishman 1978a,
p. 251; Hannan 1970, p. 336]. Having se-
lected ¢, the estimates of the coefficients of
ci,C2,- - ,¢q can be found from a set of ¢
linear equations of the form

q
> &Rk — i) = —R(k). (55)
i=1

for k£ = 1,2,---,q, where fx’(k;) is
the estimate of the lag k& autocovariance
from the sequence of original observations
x1,To, -, T, [Fishman 1978, p. 249]. Next,
having determined 62[Y (n—q)], one can eas-
ily find the estimate of the variance of X (n),
since from Equation (54),

~9 62[Y(n —q
52X = ZEE )
Finally, —assuming that the variable

V(X (n) — 1) /62 [X(n)] is governed by
the t-distribution with

k= n% [Z(q - 2j)éj] (57)

=0

degrees of freedom (see arguments given in
Fishman [1978a, p. 252|), the resulting con-
fidence interval of p, is determined as

7(71) + tk,l—a/Qa'ar[Y(n)]' (58)

The main restriction of the last method
seems to be the required existence of an
autoregressive representation of the simu-
lated process. Results of empirical studies
of the method’s efficiency published in Fish-
man [1971] were not very encouraging, since
frequently below 80%. These results were,
however, achieved in short simulation runs.
Andrews and Schriber, in their studies of
the autoregressive method reported in An-
drews and Schriber [1978] and Schriber and
Andrews [1979, 1981], observed a significant
variability in the average widths of confi-
dence intervals in simulation experiments.
Law and Kelton [1984], after comparative
studies of different fixed-size methods of
data analysis, also that the autoregressive
approach does not offer better results than
other, computationally simpler methods of
data analysis. And, in contrast to both the
method of batch means and the method of
spectral analysis, the improvement of the fi-
nal coverage when increasing the number of
collected observations was very slow. Con-
tinuous execution of the test for determining
the autoregressive order ¢ and solving the
sets of equations for determining the coeffi-
cients ¢, g, - -+ , ¢4 can be time consuming in
a sequential version, especially if longer se-
quences of observations have to be collected.

The method of standardized time
series, originally proposed by Schruben
(1983, 1985], relies on the convergence of
standardized random processes to a Wiener
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random process with independent incre-
ments, also known as a Brownian bridge
process. It is an application of the the-
ory of dependent random processes [Billings-
ley 1968, Chaps. 20 and 21| and its func-
tional central limit theorem, which is a gen-
eralization of the (scalar) central limit theo-
rem presented in Appendix A. According to
this approach, an analysed sequence of ob-
servations is first divided into subsequences
(batches) of observations, and each of them
is transformed into its standard form re-
quired by the functional central limit theo-
rem. Next, various functions of the trans-
formed sequence can be analysed to con-
struct the confidence interval of X (n). The
method requires that the analysed process
be stationary; thus, initial observations rep-
resenting its nonstationary warm-up period
should be discarded before the sequence of
n remaining observations is divided into
ky nonoverlapping batches, each of size
m. The i*" batch, containing the observa-
1018 (i 1)ymt 15 T Dmt2s *** 5 Tl Lymtms L =
1,2, ,kp, is transformed into the stan-
dardized process T;(t), <t < 1, where

(m) — X;([mt])]
[Xi(m)]v/m

for 0 <t <1 (|a] denotes the greatest in-
teger not greater than a), and 7;(0) = 0. In
this formula,

|mt][X;

Ti(t) = (59)

(60)

k
Z T(i—1)m+j

is the cumulative average of the first k ob-
servations in the i batch, and 6%[X;(m)]
is the variance estimator of the i* batch
mean. The functional central limit theo-
rem says that in the limit, as m — oo, any
standardized process T;(t),0 < t < 1, for

WI*—‘

1= 1,2, cdots, becomes the Brownian bridge
process (a mathematical model of Brown-
ian motion on the [0, 1] interval [Billingsley
1968]). This fact has been used by Schruben
[1983], who proposed to use two functions of
Ti(t) to estimate the variance of X (n): (i)
the maximum of 7;(¢),0 < ¢t < 1, and (i)
the sum of T;(k/m), from k = 1tom. The
former function is used in the mazimum es-
timator of a*[X (n)],

62, (X (n)]

max

(61)

is the location of the (first if ties occur) max-
imum of T;(k/m) as a function of k, Golds-
man and Schruben [1984], and gives the con-
fidence interval of p,,

X (n) £ tap, 1-a20maz[X (n)], (63)

where the constant #zy, 1_q/2 is from the ¢-
distribution with 3k, degrees of freedom.
The latter function is used in the area es-
timator

— 12 9
where
Ai=D (7= 05(m + 1)zgnmess (65)
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[Song 1988]. It gives the confidence interval
X(1) %ty apialX)]. (66)

Goldsman and Schruben [1984] showed that
the former estimator is asymptotically su-
perior to the later one in the sense that as
m — 00, it produces narrower and more
stable confidence intervals. On the other
hand, it can perform poorly when batches
are short. They also showed that if m is
large, the method of standardized time se-
ries is superior to the method of nonover-
lapping batch means. Another positive fea-
ture of this method is that despite the so-
phisticated statistical techniques involved,
the estimators have simple numerical forms.
For a further improvement of their qual-
ity, Damerdji [1987] proposed to use over-
lapping batches of observations as is done
in the method of overlapping batch means,
and Foley and Goldsman [1988] have mod-
ified the Equation (59), introducing the so-
called orthonormally weighted standardized
time series, which gives asymptotically nar-
rower and more stable confidence intervals
than the original one. Unfortunately, no
simple rule for selecting the batch size is
available, and only a few practical imple-
mentations of the method of standardized
time series have been reported. Theoretical
analysis of asymptotic cases shows that the
method usually requires longer batches than
the method of nonoverlapping or overlap-
ping batch means, [Song 1988].

The estimators of variance that have
been presented in this section require vari-
ous, more or less complex ways of data col-
lection. They also have their own statisti-
cal strengths and weaknesses. This has led
to the idea of finding a robust method of
simulation output data analysis by combin-
ing different estimators of variance o[ X (n)]

into a composite estimator, since, by the-
oretical arguments, combinations of inde-
pendent variance estimators should have a
smaller variance and, in consequence, give
better coverage of confidence intervals than
its components. Such an effect has been
achieved by Schruben [1983], with a linear
combination of the area estimator (64), or
the maximum estimator (61), and the esti-
mator calculated from nonoverlapping batch
means; see results of the quality analysis in
|Goldsman and Schruben 1984; Goldsman et
al.  1986; Song 1988]. The first of these
two combined estimators has been applied
in a sequential procedure for the analysis of
simulation output data described in Duersch
and Schruben [1986]. More sophisticated lin-
ear combinations of estimators are discussed
in Schmeiser and Song [1987] and Song and
Schmeiser [1988].

Research in the area of variance estima-
tion continues. The diversity of existing
methods of data collection and analysis, and
the variance estimators which they use, re-
quires a more thorough comparison of their
quality. Some results of comparative studies
can be found in Glynn and Iglehart [1985],
Goldsman and Meketon [1985, 1989], Golds-
man and Schruben [1984], Goldsman et al.
[1986], Kang and Goldsman [1985], and Song
[1988]. Readers interested in current de-
velopments in this area are encouraged to
browse through recent publications in, for
example, ”Operations Research,” ”Manage-
ment Science,” and the annual Proceedings
of the Winter Simulation Conference.

2 THE PROBLEM OF INITIALIZATION

It is well known that just after initialization
any queueing process with nondeterminis-
tic, random streams of arrivals and/or ran-
dom service times is in a transient phase,
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during which its (stochastic) characteristics
vary with time. This is caused by the
fact that, like any (stochastic) dynamic sys-
tem, such queueing systems or networks ini-
tially “move” along nonstationary trajecto-
ries. After a period of time, the system ap-
proaches its statistical equilibrium on a sta-
tionary trajectory if the system is stable, or
remains permanently on a nonstationary tra-
jectory if the system is unstable®. Note that
in practice only queuing systems with infi-
nite populations of customers and unlimited
queue capacities can never enter a stationary
trajectory and this happens if the average re-
quest for service is equal to or greater than
the average supply of service; that is, if

A > clls, (67)
where A is the mean arrival rate, 1/p, is the
mean service time, and ¢ is the number of
service facilities. In such a case, the queues
will eventually increase in length with time
and the system becomes permanently con-
gested. On the other hand, queueing sys-
tems with limited queue capacities always
reach an (inner) statistical equilibrium, even
if the system’s load expressed by the traffic
intensity p = A/cu, is much greater than 1.
In such a case, internally stationary queu-
ing systems are in the nonstationary envi-
ronment of streams of rejected customers.
Of course, output data collected during tran-
sient periods do not characterise steady state
behaviour of simulated systems, and so they
can cause quite significant deviation of the
final “steady state” results from their true
values. Although it seems quite natural that
the deletion of untypical initial observations
should result in better steady state estima-
tors, the problem to delete or not to delete
is a perennial dilemma of stochastic simula-

tion practice. Each of these two alternatives
has its advocates. The answer depends on
the assumed measure of goodness and the re-
source limitations of simulation experiments
(the maximum possible number of recorded
observations). The influence that the initial
transient data can have on the final results is
a function of the strength of the autocorre-
lation of collected observations. With no re-
strictions imposed on the length of the sim-
ulation run, this influence can be arbitrar-
ily weakened by running the simulating pro-
gram sufficiently longer. But in most prac-
tical situations simulation experiments are
more or less restricted in time, and that time
can be more or less effectively used to cal-
culate estimators. If all initial output data
are retained, the bias of the point estimator
X (n) is greater than if they were deleted.

Contrary opinions on the usefulness of
deletion are caused by the fact that it in-
creases the variance of the point estimator
[Fishman 1972, 1973a, Sec. 10.3; Turn-
quist and Sussman 1977 and, in effect, can
increase its MSE, see Equation (8). Let
us note that an increase of the variance
can be compensated for by applying one of
the variance reduction techniques. Deletion
of initial observations seems to be justified
if the variance of the estimator is smaller
than the squared bias and/or if observa-
tions are strongly correlated (the initial con-
ditions have a longer effect on the evolu-
tion of the system in time). On the other
hand, Blomqvist [1970] showed that for long
run simulations of GI/G/1 queuing systems
the minimum MSE of the mean delay usu-
ally occurs for the truncation point n, = 0,
which supports the thesis that no initial ob-
servations need to be deleted. Results of
experiments conducted by Turnquist [1977],

5 We could also mention the periodic limiting behavior of D/D/c queuning systems and their networks.
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and Wilson and Pritsker [1978b] provide the
same argument.

The usefulness/uselessness of data dele-
tion also depends on methods used for data
collection and analysis. Independent replica-
tions give much more “contaminated” data
than methods of data collection based on
single runs, since each replication begins
with a new initial transient period. Conse-
quently data deletion seems to be more cru-
cial for plurality of transient periods than
for just one transient period in one long run.
In an example discussed in Kelton and Law
[1983] the estimator of mean delay in an
M/M/1 queue obtained from replications of
500 observations, without initial deletions,
was biased -43.2%, for p = 0.95. In the
case of higher accuracy requirements, a sig-
nificant bias of estimators will normally in-
crease their chances of being outside the the-
oretical confidence intervals, thus it will de-
crease the coverage of confidence intervals.
Law [1983] Law and Kelton [1984] analysed
the influence of initial data deletion on the
coverage of the final results in the case of
the method of independent replications and
stated a clear improvement of the actual cov-
erage (experimental values of confidence lev-
els) to levels near nominal theoretical values
(1 — ), without unduly widening confidence
intervals, especially if replications were not
too long and/or not too many observations
were deleted. In methods of data analysis
based on single runs and an assumption that
the observed process is stationary, deletion
of data from the initial nonstationary period
improves approximate stationarity of the re-
maining process.

The nature of the convergence of simu-
lated processes to steady state depends on
many factors; the initial conditions of simu-
lation are one of them. Conway [1963] ad-
vised a careful selection of starting states

(typical ones for steady state of the simu-
lated process) to shorten the duration of the
initial transient phase. Since then many tri-
als have been undertaken to determine the
optimal initial conditions in the sense that
they would cause the weakest influence of
the transient phase on the steady-state re-
sults, but ambiguous conclusions have been
reached. Madansky [1976] proved that the
MSE of the mean queue length in simulation
studies of M/M/1 queuing systems (without
data deletion) can reach its minimum value if
they are initialized as empty and idle, that is,
in their modal states. Wilson and Pritsker
[1978b], having examined a slightly broader
class of queuing processes, concluded that
the optimal (in the MSE sense) initial state
is the most likely state in statistical equilib-
rium (the mode of the steady state distri-
bution) if it differs from the empty and idle
state. Moreover they found that a judicious
selection of initial conditions can be more ef-
fective than the deletion of initial data. Sim-
ilar conclusions were reached by Donnelly
and Shannon [1981] after a more methodical
investigation. Following this line of reason-
ing, Murray and Kelton [1988] proposed to
use the method of independent replications
with randomly selected initial states taken
from an initial state distribution. Such a
distribution could be constructed during the
first k, replications (the pilot phase of the
simulation experiment) and used during the
remaining k, — ko replications (the produc-
tive phase). Results reported in Murray and
Kelton [1988] show that such an approach
can be effective both for reducing the bias of
point estimates and for increasing the cover-
age of confidence intervals, without unduly
increasing the variance or mean square error
of estimates.

On the other hand, Kelton and Law
showed experimentally by investigating
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queuing systems with exponential and Er-
langian distributions of interarrival and ser-
vice times that the shortest transient periods
occur if the simulated processes start from
states slightly larger than their steady-state
means [Kelton 1985; Kelton and Law 1985].
For example, in the M/M/1 queue the mean
delay reaches its steady state in the shortest
time (with accuracy +0.01,p = 0.9) if the
initial queue length is 15, while the steady-
state mean queue length equals 9. These
results were theoretically justified by Abate
and Whitt [1987b], who indicated that the
optimal initial state when the mean value is
estimated is about one-and-a-half times the
steady-state mean. It was also shown that
starting from a state much larger than the
mean can result in a very long transient pe-
riod. Thus, because in real situations the
steady-state mean is unknown, it is much
safer to initialise systems as empty and idle,
particularly if the bias of an estimator con-
cerns us more than its MSE.

Having decided to discard data collected
during transient periods, we face the next
problem: how long such periods last. In
simulation practice we can encounter both
very short initial transient effects and tran-
sient effects that are spread over tens of
thousands of observations [Heidelberger and
Welch 1983].

2.1 The Duration Of The Initial
Transient Period

The problem of determining the duration
of the initial transient period in simulation
runs appears to be complicated, even if we
restrict ourselves to estimators of means val-
ues only. The first rules of thumb were pro-
posed by Conway [1963] and Tocher [1963].
Conway suggested the following rule:

RI. In a time series of observations
1, To, cdots, x,, the initial transient lasts un-
til the first of the series is neither the maxi-
mum nor minimum of the rest.

This rule of thumb, associating the be-
ginning of steady state with the occurrence
of the first "typical” observation, appears to
give a poor approximation of the duration
of the initial transient. As was shown in Ga-
farian et al. [1978], using this rule we can
significantly overestimate the length of the
initial transient for small p and underesti-
mate it for high p; see [Wilson and Pritsker
1978b).

The performance of a system can be re-
garded as a cyclic evolution of system’s basic
operations. For this reason, Tocher [1963, p.
176] suggested this rule:

R2. The initial transient period is over if the
longest cycle distinguished in the behaviour
of the simulated system has been executed at
least three or four times.

No results concerning the effectiveness of
this rule are available. The duration of the
initial transient period is also analysed in
the queueing theory. It has been shown that
the rate at which the mean queue lengths or
the mean delays tend to their steady state
is, after some period of time, dominated
by a term of the form exp(—t/7), where T
is called the relaxation time of the queue.
Thus, the constant 7 may be used for speci-
fying an upper bound on the length of time
after which the influence of the initial state
is negligible. For example, one can conclude
this rule:
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R3. The initial transient period is over after
the time tg = —71In B, where B is the per-
missible relative residue of the initial state,

0<pB<1.

Thus, assuming § < 0.02, at t = 471
we find that the queue characteristics are
within 2% of their steady-state values; or
in other words, output data collected from
that point of time should be biased by ini-
tial states by less than 2%. The anal-
ysis of relaxation times was initiated by
Morse [1955], who considered the correlation
function of the M/M/1 queue length. Co-
hen [1982] analysed transient distributions
of queue lengths and determined the relax-
ation time for GI/G/1 queueing systems.
These appear to be from 9 to 2 times greater
than Morse’s results for M/M/1 systems, as
p changes from 0.1 to 1.0. This diversity
of results has stimulated search for approx-
imate formulas for relaxation times, such
as Newell’s result for GI/G/1 under heavy
traffic queues [Newell 1971] and results for
Markovian queueing systems obtained by
Odoni and Roth [1983]. The latter, hav-
ing studied various Markovian systems, pro-
posed to approximate the relaxation times
by

o C?+C?
28#5(1 - \/5)2’

(68)

where C? and C? are the coefficients of vari-
ation for the interarrival and service times,
respectively, and 1/us is the mean service
time. The usefulness of the last formula
in simulation has been studied in the case
of M/M/1 and M/Ej/1 queueing systems,
[Roth 1985; Roth and Rutan 1985]. More
detailed analysis of the transient behavior of
some stochastic processes has been reported
by Abate and Whitt [1987a, 1987b, 1987¢,

1988], who analysed the relaxation times in
the M/M/1 queues and Brownian motion
processses (the latter are used to approx-
imate queueing processes in a heavy traf-
fic scenario [Kleinrock 1976]). All these re-
sults show that more heavily loaded systems
tend more slowly to their statistical equilib-
rium. Abate and Whitt have also proved
that higher moments of queue parameters
have longer relaxations times than corre-
sponding lower moments [Abate and Whitt
1987a]. Thus, mean values tend to a steady
state faster than, for example, variances.

Relaxation times have also been analysed
theoretically for some simple queueing net-
works; for example, Blanc [1985a] analysed
the relaxation time in an open network of K
service centers with a Poisson arrival stream,
an unlimited number of servers at each cen-
ter, general distribution of service times, and
a homogenous transition matrix. He showed
that the relaxation time in such a network
has an upper limit, namely,

K
T< —.
ILLS
Equality occurs for tandem connections of
queueing systems. The case of two queueing
systems in series has been analysed in more
detail in Blanc [1985b].
In addition, a conjectural relaxation time
for Jacksonian queueing networks with K
single server centers has been proposed. For
more complex queueing networks the re-
laxation times have not yet been theoreti-
cally determined. But the usefulness of even
known formulas for relaxation times can be
questioned in simulation studies. They can
be used only as first approximations of the
duration of simulated initial transients, since
it has been shown that estimators of the
mean values from simulation tend to their
steady state more slowly than exponentially;

(69)
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for example, Anderson [1985] showed that
in queueing systems with limited queue ca-
pacities the rate at which the estimator of
mean queue length tends to its steady state
eventually becomes inversely proportional to
time. It has also been shown that the stan-
dard deviation of estimators converges even
more slowly, namely, in inverse proportion
to the square root of time [Anderson 1985;
Fishman 1967]. Both of these facts have
found application in various heuristic rules
proposed for determining the duration of the
initial transient period.

Studying the convergence of a moving
average of output data to determine a pos-
sible end of the initial transient period is
attributable to Gordon [1969, p. 285] and
Emshoff and Sisson [1970, Sec. 8.2]; see
Solomon [1983, p. 195]. The simplest way
would be to find an instant of time at which
the running mean X (n) [Equation (1)] ap-
proaches a constant level with a given ac-
curacy 0,60 < 0. Thus, we can assume the
following rules:

R4. i a tlime series of observations
xl,22,--- ,x1,---, the initial transient pe-
riod is over after n, observations if k con-
secutive values of the running mean X (i)
recorded after the observation n, differ less
then 1006% from X (n — o+ k), that is, for
all t,n, <1 <n,+k ,

[ X (10 + k) — X(3))|

Xk

(70)

The stabilization ofX(n) should be tested
over a sufficiently long sequence of observa-
tions, so the parameter k should be large (in
the statistical sense); that is, & < 30. The
above rule has two weaknesses. First, as has
been indicated by Conway [1963], accumula-
tive statistics such as running means usually

stabilize very slowly with time, and so usu-
ally give overestimated values of n,. Second,
fluctuations of the running mean X (n), cal-
culated over data collected during a single
simulation run, can continue for a long time.
For these reasons the above rule and its var-
ious modifications are usually used with the
method of replications, and the inequality
(70) is applied to the running mean after
having additionally smoothed it by averag-
ing over replications. Despite this, the re-
sulting length of the initial transient period
is still usually overestimated [Gafarian et al.
1978; Roth 1985; Roth and Rutan 1985; Wil-
son and Pritsker 1978al. Welch proposed
a special technique for smoothing running
mean that uses the concept of a moving win-
dow within which mean values over replica-
tions are additionally averaged, producing a
smoother (but still highly correlated) pro-
cess [Welch 1983, p. 293]. No results on
the effectiveness of this technique have been
published.

Another rule of thumb can be based on
the supposition that in steady state typical
observations are evenly dispersed around the
mean value. For example, Fishman [1973b,
p. 275] proposed the following:

R5.  The initial transient period is over
after n, observations if the time series
Ty, Ty, -+, Ty, crosses the mean X(n,)k
times.

This rule is sensitive to the value of k
[Gafarian et al. 1978]. Too large a value
will usually lead to an overestimated value of
n, regardless of system’s utilization, whereas
too small a value can result in an underes-
timated n, in more heavily loaded systems.
In Gafarian et al. [1978], k = 25 was rec-
ommended for M/M/1/00 queueing systems,
whereas in Wilson and Pritsker [1978b] k =
7 was chosen for the M/M/1/15 system. The
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system-dependent selection of the parameter
k in the rule R5 seems to be too arduous for
potential users.

Yet another approach, which Solomon
[1983] attributes to Emshoff and Sisson
[1970], is based on the x? goodness-of-fit, test
applied for selecting a time from which the
numbers of observations below and above
the running mean are equal (in the statis-
tical sense). According to this test, the se-
quence of observations should be partitioned
into batches of at least m, = 10 observations
each (Solomon selected m, = 30).Then one
can conclude the following rule:

R6. In a time series of observations
1, Xa, -, Ty, the initial transient is over af-
ter n, observations if the x* goodness-of-fit
test confirms that in the batch of observa-
tions T, 11, Tngt2s " s Tnyem, Jollowing the
observation n, the numbers of observations
above and below the running mean X (n,)
are about the same.

Rule R6 seems to be quite simple and in-
dependent of any system-related parameter.
No results are available on its effectiveness
and relationship to other criteria. For reduc-
ing the fluctuations of analysed sequences
and saving memory space if long transient
periods are expected, batches of individual
observations can be replaced by their mean
values. Note that such batches must be in-
troduced before the procedures for selecting
the size of uncorrelated batch means dis-
cussed in Section 1 can be applied. There
are no established rules in this case for select-
ing the batch size. If a statistical test is used
to help decide about the length of the initial
transient, we should follow the requirements
of the test or use statistically large batches,
which usually means taking m, > 30. Oth-
erwise the only recommendation is to select
a batch size which gives the desired data re-

duction while retaining the stabilizing trend
of the original sequence. After the batch size
m, is selected, the sequence of batch means
X1(my,), X2(m,), - -+, can be tested in a sim-
ilar way to the sequence of the original obser-
vations. For example, Wilson and Pritsker
[1978a/ formulated the following rule, which
they attributed to Schriber [1974] (Solomon
(1983, p. 195] attributed it to Emshoff and
Sisson [1970]):

R7.  In a time series of batch means
X1(m,), Xo(m,), - -, the initial transient is
over after b, batches, that is, after n, = b,m,
observations, if the k most recent batch
means all fall within an interval of width
01, that is, if

| Xp—i(mo) — Xy—j(mo)| <61, (71)
for0i<k—10<j<k-—1.

This rule, like rule R4, is sensitive to the
value of the parameter k, which should de-
pend on the variability of the observed pro-
cess. A small value for k, for example k =
2, as was assumed in Wilson and Pritsker
[1978a] and Solomon [1983, p. 196], can lead
to an underestimation of n,, since the differ-
ence between averages, having dropped only
k times below 1, can easily rise again to an
unacceptable level, as in an example consid-
ered in Solomon [1983, p. 197].

For further data reduction and additional
smoothing of the tested sequence, Kelton
and Law [1983] proposed applying such a
batching technique in connection with the
method of independent replications; see Sec-
tion 1. Namely, they batched the sequence
of mean observations (means over replica-
tions) and then analysed the sequence of the
means of these batches, assuming rule RS:

RS. In a time series X1(my), Xo(m,), -,
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the initial transient period is over after the
batch b,, that is, after n, = my,b, obser-
vations, if the sequence of the batch means
after the batch b, can be approrimated by a
straight line with zero slope.

Rule R8 can be applied only in the case
of monotonic convergence to steady state
but, as was proved by Kiefer and Wolfowitz
[1955], in any stable, initially empty-and-idle
GI/G/c queueing system the mean delay-in-
queue grows monotonically in time. Kelton
and Law [1983] proposed testing the slope
of the regression line backwards after collect-
ing an assumed number of observations. The
test for zero slope is over a fixed number of
batch means (if zero slope is confirmed, the
test is repeated over an earlier sequence of
batch means to find whether the initial tran-
sient period had expired earlier). If the test
fails at the beginning, a new check point is
chosen after gathering further output data
from the simulation. Note that this requires
that the process of collecting new observa-
tions in all previously stopped replications
be continued again. Because correlations be-
tween batch means can still be significant,
they are approximated by a straight line
using a generalized least-squares procedure
proposed by Amemiya [1973], which allows
for autocorrelation of the analysed data. For
additional saving of memory space, the num-
ber of batches could be kept constant by al-
lowing the size of batches to grow when sim-
ulation runs are continued. The procedure
implementing rule R8 appears to be quite
effective, especially in lowering the MSE of
estimators [Roth 1985; and Roth and Rutan
1985].

Rules R4 - R8 are based on the con-
vergence of the mean of observations to its
steady-state value. Other criteria of conver-
gence are also possible. For example, be-
cause the variance of the mean of obser-

vations taken from a stationary process is
approximately inversely proportional to the
number of observations [Fishman 1973a, p.
281; Gafarian et al. 1978|, that is,

); (72)

[cf. Equation (9)] where C is a positive
constant and n is the number of observa-
tions, Gordon [1969] proposed rule R9:

R9. In a time series xq,xa,- -+ , T, the ini-
tial transient is over after the observation
ne if the graph (logn,log sigmalX(n)]), be-
comes approximately linear with slope -0.5
from this observation on.

To smooth variations of the analysed
curve, Gordon [1969] proposed analysing the
variance of the mean of observations aver-
aged over a number of replications. This rule
was analysed in Gafarian et al. [1978] and
Wilson and Pritsker [1978a], using Equation
(4) to calculate 62[X (n)], thus rejecting ex-
isting correlations between observations. In
this case the rule R9 can give an overesti-
mated value of n,. No results have been pub-
lished on the effectiveness of this rule when
more accurate estimators of 02[X (n)] are ap-
plied.

Fishman [1971, p. 29| proposed equating
the variance of the mean of autocorrelated
observations with the variance of the mean
of a hypothetical sequence of independent
observations to find the number of collected
(autocorrelated) observations equivalent, in
the above sense, to one independent (hypo-
thetical) observation. After some simplifica-
tion we get the following rule:

R10.

Ty Xy "y Tpy ",

In a time series of observations
the initial transient is
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over after

(73)

observations, where R(k) is the estimator of
the autocorellation of the lagk,0 < k <n—1;
see Equation (40)

The sequence of observations collected
after the observation n, should be (approx-
imately) independent of the initial condi-
tions. The autocovariance estimators R(k)
should be analysed with caution; see the
comments after Equation (22). Comparing
this with the results given for example in
Roth and Rutan [1985], one can state that
Rule R10 usually gives underestimated val-
ues of n,; no exhaustive comparisons of this
rule with other rules are available.

As an example of more sophisticated
truncation rules let us mention the rule pro-
posed in Beall [1982] based on the analysis
of the convergence of the distribution func-
tions to their steady-state forms. The rule
has been analysed in the context of autore-
gressive moving average (ARMA) processes
[Brockwell and Davis 1987, Chap. 3]. All the
above-mentioned rules proposed for deter-
mining the length of the initial transient pe-
riods are either quite elaborate and, as such,
do not ensure an accurate control of the ini-
tialization bias, or can determine precisely
the length of the initial transient period
but only for restricted classes of simulated
processes and/or by applying sophisticated
techniques to collect and analyze the output
data. This can unnecessarily lengthen the
time of simulation experiments, especially if
the required accuracy is tested sequentially;
cf. the rule R8. Usually the effectiveness
of these rules also strongly depends on the
specific parameters they use, but little or no
guidance is available on how to select val-

ues for these parameters. Some of the rules
have been implemented as built-in options
offered in simulation packages such as GPSS,
SLAM and SIMSCRIPT IL.5 [Law and Kel-
ton 1982a|. Thus, potential users should be
aware of their limitations.

A promising approach for detecting the
expiration of the initial transient period is
offered by statistical stationarity tests based
on the theory of dependent stochastic pro-
cesses developed by Billingsley [1968]. Ac-
cording to this approach, we have the fol-
lowing rule:R11:

R11. The initial transient data have been re-
moved from a given sequence of observations
if the (standardized) sequence determined
over the remaining observations behaves in
a way consistent with a standard (station-
ary) stochastic process.

Such tests were first invented by
Schruben [1982] and Schruben et al. [1983]
as a special application of the same theory
which is applied in the method of standard-
ized time series for generating confidence in-
tervals; see Section 1. These tests are based
on the high sensitivity of the sequence of par-
tial sums

Sy = X(n) — X(k) (74)

’

k=0,1,2,cdots,and Sy = S,, = 0, to the
presence of initialization bias in X (n); X (n)
and X (k) are means over n and k first obser-
vations, respectively; see Equation (1). Fol-
lowing this phenomenon, tests proposed in
Schruben [1982] and Schruben et al. [1983]
analyse the convergence of a standardized se-
quence {T'(t)},0 <t < 1, to the Brownian
bridge process with zero mean and variance
equal 1. The sequence {T'(t)} is the stan-
dardized sequence of the partial sums Sk,
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namely,

L7t] Sy
F[X(n)]v/n’

for 0 < t < 1 (where |a]| denotes the
greatest integer not greater than a), and
7(0) = 0.

Heidelberger and Welch [1983] listed a
few other standardized sequences that can
be used to find statistics for the above rule.
Rejection or acceptance of the hypothesis
that a given subsequence of observations is
stationary or, equivalently, that the initial
transient period is not included in the obser-
vations, depends on the probability charac-
terizing the scalar value calculated from the
considered sequence. Despite the sophisti-
cated theory hidden behind these tests, they
appear to be quite simple numerically and
can be applied to a wide class of simulated
processes. A sequential version of one of the
tests proposed by Schruben et al. [1983]
is presented in Section 3. The main prac-
tical problem with their implementations is
that they require a priori knowledge of the
variance estimator 62[X (n)] of the simulated
process in steady state. To estimate this
variance, one can use a sequence of obser-
vations collected at some distance from an
assumed truncation point, assuming that the
process is then at least closer to steady state.
Schruben [1982] also describes a test that
does not require the variance 02[X (n)], sug-
gesting that it should perform not worse
than others. No results of its evaluation are
available. Note that searching for the begin-
ning of the stationary phase by means of any
statistical test can be shorten if it is preceded
by one of the rules of thumb, for example,
the rule R1 or R6, to find a rough approxi-
mation of the length of the initial transient
period.

T(t) = (75)

Recently Vassilacopoulos [1989] pro-
posed a new, simple statistical test, which
does not require the calculation of the vari-
ance of the simulated process. But as its
author stated, the test should be evaluated
extensively before its adopted in simulation
practice.

3 SEQUENTIAL PROCEDURES FOR
STEADY STATE SIMULATION:
EXAMPLES

This section presents in detail two sequen-
tial procedures for stopping the simulation
experiment when the required relative pre-
cision of confidence intervals is achieved.
The first procedure is based on the method
of spectral analysis; the second applies the
method of the nonoverlapping batch means.
Since both these procedures require the anal-
ysed sequence of observations to be station-
ary, each of them has to be preceded by a se-
quential procedure for detecting the length
of the initial transient (nonstationary) pe-
riod. Thus, when these procedures are ap-
plied, simulation experiments comprise two
stages: Stage 1 for determining the length of
the initial transient period and Stage 2 dur-
ing which the steady-state behaviour is sim-
ulated and analysed, as illustrated in Figure
3.

3.1 Detecting the Length of the Initial
Transient Period

The sequential procedure presented here is
based on a stationarity test proposed by
Schruben et al. [1983]. It is used to test the
hypothesis that a sufficient number of initial
transient data has been (or has not been)
discarded. As in any statistical test, the
value of a chosen statistic calculated from
the tested sequence of observations
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is compared with the corresponding value
from a standard sequence, and the decision
about rejection or acceptance of the hypoth-
esis is taken at an assumed significance level
o, 0 < oy < 1. The significance level can
be regarded as the probability of erroneously
rejecting the hypothesis that the tested pro-
cess is stationary. To get a first approxi-
mation for the truncation point,n’ , we can
use one of the heuristic rules R1-R10 pre-
sented in Section 2. For example, in simu-
lation studies of data communication proto-
cols, [Pawlikowski and Asgarkhani 1988] rule
R5 was applied (assuming k£ = 25). A flow
chart of the procedure is given in Figure 4.

The problem encountered during testing
a sequence of n; observations for station-
arity is that the steady-state estimator for
the variance o?[X(n)], and the number &
of degrees of freedom for its x? distribu-
tion, has to be known earlier than we know
that the process has entered the stationary
region. To get a robust estimate of that
variance, the estimation should be done us-
ing only a subsequence of the last n, ob-
servations from the sequence of n; observa-
tions tested for stationarity; that is, taking
Ny > YyNy, where 7,(7y, > 2) is the “safety”
coefficient for the variance estimator to rep-
resent the steady state. Assuming larger
value of 7,, the last n, of n; observations are
more likely to be from the stationary region,
even if the truncation point of the initial
transient period has been initially underes-
timated. Both the value of n, and n; should
be selected after having taken into account
the minimum sample sizes required by the
method of variance analysis and the station-
arity test. Heidelberger and Welch [1983]
assumed n, > 100, v, = 2. Having assumed
such value of n, we have at least n, = 200
observations stored in a buffer for testing

against nonstationarity, which is the size
of the sample assumed by Schruben [1982].
Since the number of observations tested for
stationarity should be larger if longer tran-
sient

periods are suspected, one can assume

that

ng = max(%)nv: ’7”:): (76)
where yn? is the smallest length of one step
in sequential testing for stationarity for a
given n, v > 0.

Thus, after having discarded n observa-
tions, the next n; observations are collected
and the last n, observations are used to find
0?[X(n)] and k. The variance and the de-
grees of freedom of its x? distribution can
be estimated using a few different methods,
presented, for example, in Fishman [1973a,
p. 289|, Heidelberger and Welch [1981a],
and Schruben [1982]. The method desribed
by Heidelberger and Welch [1981a], based
on the spectral analysis of observations, was
used in simulation studies of data com-
munication protocols [Asgarkhani and Paw-
likowski 1989; Pawlikowski and Asgarkhani
1988] and is summarized in Appendix B.
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Stage 1

START
determining the length of the initial transient

period

detect the length of
initial transient data

simulation run
too long

steady state analysis

estimate parameters
and test their precision

simulation run

» too long

the required precision has
been obtained

Fig. 3: Two-stage sequential methods for data collection and analysis in steady-state sim-

ulation.
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apply a heuristic rule for
discarding observations collected
during the initial transient period

too long transient
expected?

collect new
observations

g

test stationarity of the next
n, observations

discard a number

| Of observations
from beginning of

tested sequence

is the sequence
stationary?

the length of the initial
transient has been found,
start steady state simulation

Fig. 4: Sequential analysis of the length of the initial transient period.
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Having estimated the variance, which by
assumption represents steady state of the
process, we can start testing the first n; ob-
servations for stationarity. If the test ac-
cepts the hypothesis that the end of the
initial transient has been detected correctly
and the process has already entered its sta-
tionary region, this stage of analysis of the
simulation output results is finished and the
program may start to analyze confidence in-
tervals; see Section 3.2. Otherwise tran-
sient effects have still been detected. Con-
sequently additional yn} observations from
the beginning of the test sequence are dis-
carded, yn} new observations are collected,
the last n, observations are again used to
estimate 0[X(n,)], and the first n; obser-
vations in the stored sequence are tested for
stationarity. This procedure is continued un-
til the stationarity of the sequence of ob-
servations is confirmed or 7, 4. (the upper
limit of the number of tested observations) is
reached. As the longest acceptable length of
the initial transient period, one can assume
Nomaz = 0.9Nmag, Where np,q, is the max-
imum length of the simulation run. If the
transient phase extends beyond n, ;,q, obser-
vations, either the allowed maximum length
of the simulation run is too short or the sys-
tem is unstable.

Summing, up, the procedure requires the
following parameters:

nmar The maximum allowed length of the
simulation run measured in the num-
ber of recorded observations (to be de-
cided in advance. In simulation stud-
ies reported in Asgarkhani and Paw-
likowski [1989] and Pawlikowski and
Asgarkhani [1988] 7., was not less
than 100, 000);

Nomaz Lhe maximum allowed length of the
initial transient period (the default

value is 14 mae = 0.5Mm44);

n, The length of the sequence used for
estimating the steady-state variance
0?[X(n)] (the default value is n, =
100);

The length of the sequence tested for sta-
tionarity; see Equation (76).

ny

a; The significance level of the stationarity
test (0 < oy < 1; the default value is

The “safety” coefficient for the estimator
of variance o?[X (n)] to represent the
steady state (7, < 2; the default value

is v, = 2).

Yo

v The “exchange” coefficient, determining
the number of new observations in-
cluded in each sequential test for sta-
tionarity (y > 0; the default valueiis
v =0.5).

The porcedure can be described as follows:

procedure DetectInitialTransient;
{determine the length of the initial period
applying the Schruben’s test preceded by an
heuristic rule of truncation}

Step 1

Start the simulation run from the empty-
and-idle state;

apply one of the heuristic deletion rules R1-
R10 {see Section 2} to determine n};

{n} is the first approzimation of the number
of observations to be deleted}

if (the initial transient period embraces
more than n, ., observations) then

goto Step 6
else n, := n}; discard first n, observa-
tions
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endif;

if >~yn’ th = 1 =

i ) Yol > 0t then ny := vy,n, else n; ) VE - L B

. T= mzk(l—n—t)[x(nﬂ—x(@]v
endif; t =

An = ny; o meti

{n; observations will be tested for stationar- where X (i) = j:;H i

ity, An old observations will be replaced by
new ones}

Q1 1= Qg

{the initial value of significance level of the
test for stationarity; see Step 4}

Step 2
if n,+n <nomas then

append A,, observations to the tested se-
quence;
{some of these observations may have been
already collected when the heuristic deletion
rule was applied}

goto Step 3
else  {if no +nt > Nomax

goto Step 6

endif;

Step 3

Determine the variance 6%[X (n,,)] and , the
degrees of freedom of the variance distribu-
tion, using the last n, collected observations
starting from the observation (n,+n; —n, +
1);

{for example, apply the procedure Spec-
tralVariance Analysis described in Appendix
B, assuming x5 = Tp,in—ny+ss Jor § =
1,2, cdots, n, }

Step 4

{the test for stationarity, [Schruben et al.
1983, p. 1173]}

Take all n; observations, starting from
theobservation (n, + 1), and calculate the
test statistic

if (a negative bias of the mean X(n,) is
suspected )
then goto Step 5
elsif ( apositive biasissuspected) then T
= -T
{the reason for considering bias of an as-
sumed sign 1s that one-sided tests are usu-
ally more powerful than their two-sided
correspondents}
else
{if a sign of the initial bias is difficult to pre-
dict, then prepare data for a two-sided test}
T :=|T|; ap = ay/2
endif ;

Step 5
if T'<ty1_4, then
{tk1-a, is the upper (1 — oy ) critical point
from the t-distribution with k degrees of
freedom}

write (‘the initial transient period is
not longer than n, observations’);

start sequential analysis of confidence in-
tervals
{call one of procedures presented in Section

else {ifT > ty1-ay}

discard first yn’ observations from the
tested sequence;

Ny = No+YN5; YN 1= VN5
2
endif

goto  Step

Step 6
{if the initial transient period embraces more
than Ny masw 0bservations}
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stop the simulation run;

write (‘the initial transient period em-
braces more than 7, ., observations, or the
simulated process is unstable’)

end DetectInitialTransient.

The effectiveness of this procedure strongly
depends on the effectiveness of the variance
estimator 62X (n)].

3.2

Sequential Testing for a Required
Accuracy of Results

Both sequential procedures for stopping a
simulation experiment which are presented
here require the analysed sequence of obser-
vations to be representative of steady state,
so n, observations representing the initial
transient period have to have been discarded
beforehand.

The first procedure is a modified version
of the spectral method of analysis proposed
by Heidelberger and Welch [1981a, 1981b,
1983]. Its simplified flow chart is given in
Figure 5. As mentioned in Section 1, the
method allows the reduction of the number
of individual data items stored in memory
during a simulation experiment by batching
individual observations into batches of size
2m,m = 1,2,---, and replacing them with
the batch means. These means are stored
in the buffer AnalysedSequence of size 2M.
Whenever 2M batch means over batches of
m observations are recorded, they are con-
solidated into M means over batches of size
2m. Subsequent observations are lumped
into M successive batches of size 2m, and if
more than M such new batches are needed,
the rebatching procedure is repeated. Thus,
the buffer AnalysedSequence can be imple-
mented simply as a one-dimensional array of
size 2M. The accuracy of estimators is mea-
sured by the relative precision € of confidence
intervals, defined in Equation (12), and the
simulation is stopped if € < €02, Where

enax is the acceptable maximum value of
the relative precision of the final results. The
current values of ¢ are evaluated at consec-
utive checkpoints wy (K = 1,2,---;wp <
Naz ), that is, each time when (wyy1 — wy)
new observations have been collected. To
limit the number of possible checkpoints, one
can assume that they are geometrically dis-
tributed;that is, for a given wy,

W41 = min{b/a ((.dk - no)J + Ny, nmaa:}a (77)

where k = 1,2,---; |z] denotes the greatest
integer not greater than x and v, > 1. To
avoid too large a distance between consecu-
tive

checkpoints, one can assume w; =
max(2M, 2n,) and a constant value for the
step between checkpoints above a thershold
point. Following a different reasoning, selec-
tion of the value of w; satisfying the inequal-

ity [0.1(Mmaz — 70) |

+n, <wi < 0.2(Nnae — no) | + 10 (78)

was suggested in Heidelberger and Welch
[1983]. The estimator of variance o[X (n)],
and the number k of its degrees of free-
dom needed in analysis of confidence inter-
vals, are calculated here using the proce-
dure SpectralVarianceAnalysis. It requires
at least n, > 100 batch means to be avail-
able (see Appendix B). This approach is de-
scribed below by a pseudocode procedure
that uses the following parameters:

n, The number of discarded initial obser-
vations (determined by the procedure
DetectInitial Transient).

The maximum allowed length of the
simulation run, measured in the num-
ber of recorded observations (N4 >
max(3n,,n, + 2M); to be decided in
advance).

nmax
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observations from the initial
transient period have been
discarded

collect more observations |eg

'

determine steady state
estimators and test their
precision

IS
the required
precision
reached?

the next check-
point within simulatio
length limit?

the steady state

parameters have been
estimated with

the required precision

The required precision
can not be reached

Fig. 5: Flow chart for the spectral method.
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n, The length of the sequence used for es-
timating the variance o?[X(n)|(n, >
100); the default value is n, = 100).

Yo The checkpoint incremental coefficient
for sequential testing for accuracy
(74 > 1; the default value is 7, = 1.5).

(I — @) The assumed confidence level of the
final results (0 < a < 1; the default
value is alpha = 0.05).

€maz The maximum acceptable value of the
relative precision of confidence inter-
vals (0 < €nar < 1; the default value is
€maz = 0.05).
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procedure SpectralAnalysis;
{sequential analysis of simulation output
data based on spectral analysis of the series
of collected observations}

const M = 100;

{the default value of the minimum number
of data points for the analysis of confidence
intervals; M > n, > 100; see Section 3.1}

procedure Batching;
{preparation of secondary output data;
transformation of individual observations
into the sequence of n, more than 2M batch
means of sequentially increasing batch size}
begin
{ calculate the batch mean X;(m), and
store it as the j™ data item in the buffer
AnalysedSequence}

X;(m) := sum/m;

if j=2M then
{ consolidate 2M means of batches of size m
into M means of batches of size 2m}

for s:=1to M do
X,(2m) := 0.5(X g, 1(m)+X2s(m))

enddo
m:=2m;j =M
endif

j:=7+1; sum :=0
{start to calculate the next batch mean}
end Batching;

procedure Estimation;
{ sequentially calculate estimates and test
their precision until the required precision is
reached}
begin

find the estimator 62[X(n,)] for the se-
quence Yj_nvﬂ(m), o+, X;(m), the last n,
batch means stored in the buffer Analysed-
Sequence, and determine k, the degrees of
freedom of the distribution of 62[X (n,)];
{ apply the procedure Spectral Variance Analy-
sis;see Appendiz B}

calculate the relative half width of the
confidence interval at the confidence level
(1 — a) for the current checkpoint wy:

_ th1—a/26[X(ny)]
X(jm) ’

_ X Xu(m)

where X (jm) -

is the current value of the estimated
mean after jm observations, and tj1_o/2 is
the upper (1 — «/2) critical point of the t-
distribution with x degrees of freedom;
{test conditions of stopping the simulation
run}
if (€ <é€nar) then

{print the final results and stop the
simulation}

StopSimulation := true
else
{the required precision has not been
reached yet; determine the next, (k + 1)st,
checkpoint}

k:=Fk+1;

wi = man(|Ya(Wr_1 — 10) ] + Mo, Nmaz)
endif
end Estimation;
begin {main procedure}
m =1,
{the initial batch size}
k=1,
{the initial checkpoint is after w, =
observations}
Wy 1= Ny 1 1= 1;
{having discarded n, observations, collect
next observations starting from the observa-
tion (w, + 1)}
wy = maz(2M,2n,);
{the default location of the first checkpoint}
sum := 0; 5 :=1;
{start calculating the 1st batch mean}
StopSimulation := false ;
{a condition of stopping the simulation has
not been met yet}

w1
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while (not StopSimulation ) do
{collect and process new (v — wi_1)
observations}
get the observation
Lewo+i s
sum = sum + Ty, 4i;

should have been discarded earlier, apply-
ing, for example, the procedure Detectlni-
tialTransient. For weakening serial corre-
lations of analysed output data, individual
observations are replaced here by the less
correlated means of their batches. Thus,

if (imodm=0) then Batching the problem of direct analysis of confidence

endif;
if (i =
endif ;
if (not StopSimulation) then
1:=1+1;
if (7> npew —n,) then
write (‘the required accuracy
can not be reached; either restart the sim-
ulation using a new seed (seeds) of random
number generator, or increase Ny,q;, Or in-
crease @, Or iNCrease €, ) ;
{ for obtaining a new sequence of pseudoran-
dom numbers, independent from the previous
one, assume the last number from the previ-
ous sequence as the first number of the new
sequence}

wi ) then Estimation

StopSimulation := true
endif
endif

enddo;

write (‘the required precision of re-
sults has been obtained having collected’,
n,+ jm, ‘observations; the final relative pre-
cision:’, 100€%, ‘the final (1 — «)100% confi-

dence interval:’, X (jm)[1 £ ¢])
end SpectralAnalysis.

The next sequential procedure for stop-
ping simulation experiments when the re-
quired precision of results is reached is based
on the method of nonoverlapping batch
means. Its simplified flow chart is given
in Figure6 (only the main loops of com-
putations are depicted). As in the case of
the procedure SpectralAnalysis, the initial
nonstationary sequence of n, observations

intervals from correlated observations is re-
placed by the problem of determining the
batch size m*, such that batch means are
(almost) uncorrelated at a given level of sig-
nificance. Generally, in a sequence of corre-
lated data the autocorrelation coefficients of
lag k, k= 1,2,--- | [see Equations (21) and
(22)] are not necessarily decreasing as the
lag increases, although all autocorrelation
coefficients are zero if the sequence contains
uncorrelated observations. For this reason
we follow here the test proposed by Adam
[1983]: a given batch size can be accepted
as the batch size for approximately uncor-
related batch means if all L autocorrelation
coefficients of lag k(k = 1,2,---, L) are sta-
tistically negligible at a given significance
level 3.0 < (B, < 1. The analytical prob-
lems encountered during estimation of the
autocorrelation coefficients suggest that the
number of considered lags should be limited
to L = 0.1kyy, where kyy is the number of
batch means tested for autocorrelation; see
comments in Section 1. The autocorrelation
coefficients can be better estimated by the
so-called jackknife estimators [Miller 1974],
which are usually less biased than the ordi-
nary estimators defined by Equations (21)
and (22). A jackknife estimator of autocor-
relation coefficient of lag k for a sequence of
batch means of size m is calculated from the
following formula:
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P(k,m)

7 (k,m) + " (k, m)

= 2r(k,m) — 5

(79)

where the estimators on the right-hand-side
are calculated like ordinary estimators of au-
tocorrelation coefficients [see Equations (21)
and (22)], except that 7(k,m) is the esti-
mator over all kjo batch means, whereas
7'(k,m) and 7' (k, m) are estimators over the
first and the second half of the analysed se-
quence of kyy batch means, respectively.
Let us note that:

1. to get acceptable estimators of the au-
tocorrelation coefficients, at least 50
batch means should be available, [Box
and Jenkins 1970, p. 33]; thus in the
case of jackknife estimators one should
assume kyo > 100.

2. to ensure approximate normality of
batch means, the size of considered
batches should not be less than 50
[Adams 1983].

3. to get an acceptable overall signifi-
cance level # when testing the value
of L autocorrelation coefficients of lag
k(k=1,2,--- L), each at the signifi-
cance level G, we have to assume

L
B < Zﬂka (80)
k=1

hence in practice L should not be too large.
This restriction is irrelevant if the autocor-
relation coefficients decrease monotonically
with the value of the lag, since then only
7#(1,m) has to be considered.

To avoid wastefully collecting an exces-
sive number of observations, especially when
testing batch sizes, the procedure Batch-
MeansAnalysis uses two buffers for storing
batch means: a buffer called ReferenceSe-
quence is used to store the batch means
X1(my), Xo(m,), - -+ of a batch size m,, and
a buffer AnalysedSequence is used for stor-
ing an assumed number kj, of batch means
over batches of size my = sm,(s =1,2,---),
formed from the batch means kept in the
ReferenceSequence. Thus, since the number
of data items collected in the ReferenceSe-
quence grows in time during a simulation
run, a linked list of batch means seems to
be a proper data structure for this buffer.
The number of data items in the Analysed-
Sequence is limited to ky, so it can be im-
plemented as an ordinary one-dimensional
array. By selecting m, properly, we can se-
cure a sequential increase of tested batch
sizes slower than in the batching schemes
proposed in Adams [1983], Fishman [1973a],
Law and Carson [1979] to reduce the resul-
tant simulation run length. For neutralizing
the observed randomness of the estimators
of correlation coefficients, m* = my is se-
lected as the final batch size of weakly cor-
related means iff the hypothesis of all zero
autocorrelation coefficients is accepted in
two successive tests, both for the batch size
me_1 and mg.

Having selected the batch size m*, one
can sequentially analyse the accuracy of re-
sults by calculating confidence intervals from
Equations (18) and (19), which are valid
for independent and identically distributed
batch means. The sequence of batch means
for batch size m* kept in the buffer Refer-
enceSequence can be sequentially appended
by new batch means if more observations are
needed to improve the accuracy of results.



3 SEQUENTIAL PROCEDURES FOR STEADY STATE SIMULATION: EXAMPLES

44

observations from the initial
transient period have been
discarded

collect new observations and
calculate k, batch means of

batch size m4
y
test autocorrelation within the collect more observations
sequence of batch means and calculate k; batches of
larger size

are batch means
uncorrelated?

use more observations
and/or means over larger
batches

determine steady state
estimators and test their
precision

A

Yes

is
the required
precision
reached?

appended sequence
of observations be within
simulation length
limit?

the steady state

parameters have been
estimated with

the required precision

Fig. 6: Flow chart for the method of batch means.
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As mentioned in Section 1, Schmeiser [1982]
showed that using 10 to 30 batch means
over longer batches can give more accurate
results (and a better coverage of the esti-
mators) than using more batch means but
over smaller batches. Following these rec-
ommendations, when the accuracy test of
the estimator from k. batch means stored
in the ReferenceSequence fails, then these
kp. batch means are used to form k;, = 30
batch means in the AnalysedSequence buffer
for the additional accuracy test. Such test is
done before a new batch mean is appended
to the ReferenceSequence.

The whole method can be summarized by
the following pseudocode procedure, which
requires the following parameters:

n, The number of discarded initial obser-
vations (determined by the procedure
DetectInitial Transient).

The maximum allowed length of the
simulation run, measured as the num-
ber of recorded observations (7,4, >
Ny + Mykpo; to be determined in ad-
vance).

nmaa:

1 — a The assumed confidence level of the
final results (0 < a < 1; the default
value is o = 0.1).

€maz 1he maximum acceptable value of the
relative precision of confidence inter-
vals (0 < €02 < 1; the default value is
€maz = 0.1).

The initial values of other parameters are
given in the procedure.

procedure BatchMeansAnalysis;

{ sequential analysis of simulation output
data based on analysis of uncorrelated means
of nonoverlapping batches of observations}

const m, = 50;

{the default value of the batch size for means
stored in the ReferenceSequence}

ky, = 100;

{the default value of the number of batch
means stored in the AnalysedSequence}

procedure DetermineBatchSize;
{ determine the batch size for approximately
uncorrelated batch means}
begin
s:=1; 5 := 1; sum := 0;
{these are the initial values of parameters
for determining X ;(m,), the ™" batch mean
of size m,, at the s sequential step}
while (( not StopSimulation)
and (not Uncorrelated)) do
{(t — 1) observations have been already
recorded}
for v:=itoi+ ky,m,—1 do
{ collect new ky,m, observations for the next
kyo batch means of size m, to be store in the
ReferenceSequence}
get the observation z,_ + v;
{the initial n, observations have been
discarded}
sum = sum + x,, + v,
if (vmodm,=0) then
{ calculate the batch mean X ;(m,); the j™
data item in the ReferenceSequence}
X ;(m,) =sum/m,;
sum = 0; 7 :=7+1

endif
{the next batch mean has been determined}
enddo
{the next ky, batch means have been

determined}

for v:=1tok, do
{consolidate sky, batch means Xi(m,),
Xa(my,), - -+ ,from the ReferenceSequence into
ky, batch means Y 1(smy,), Ya(sm,), -+ ,in the
AnalysedSequence, which will be tested for
autocorrelation}
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s

?v(smo) = Zy(v71)3+'r(mo)/3

enddro1
TestCorrelation;
1= 1+ kpomy;
{nosi 1 observations have been collected}
if (not Uncorrelated) then
{re-initialize the counter wvariable for the
next autocorrelation test}
si=s+1
endif
if (not Uncorrelated) and (n,+
i +kpomo — 1 > nype, ) then
{stop selecting the batch size if the next test
requires more than Ny,., observations}
write ( ‘the batch size of uncor-
related batch means can not be determined;
increase 7,4, or 4);
{B is the significance level of tests against
autocorrelation used in the procedure Test-
Correlation; see Eq. (80)}
StopSimulation :=
endif
enddo
{of search for the batch size of uncorrelated
batch means}
end DetermineBatchSize;

true

procedure TestCorrelation;
{test significance of autocorrelations between
batch means for a given batch size}
const L =10;
{the default number of autocorrelation coef-
ficients; if autocorrelation coefficients mono-
tonically decrease with the value of lag then
L =1, else L:=0.1 ky, }
6 =0.1;
{the default value of the overall significance
level of L tests against autocorrelation}
begin

Correlation :=0;
{the initial value for testing L correlation

coefficients}
for k:=1to L do

{test whether all L autocorrelation coeffi-
cients are statistically negligible each at the
By significance level}

calculate  the  jacknife  estimator
#(k,sm,) of the autocorrelation coeffi-
cient of lag k for the sequence Yi(sm,),

Yo(sme), -+, Yk, (sm,) stored in the
AnalyzedSequence; {apply FEq.  (79) for
m= sm,}

Br = B/L;

2Pk, sm,)]:=

if (k=1) then  (1/ k)

else (142325217 (u, smy)) /kso)
endif

{the variance of the autocorrelation coeffi-
cient of lag k [Bartlett 1946/}
if (|7(k,smo)| < 21, j26[F (K, 5m,)])
{z1-8,/2 is the upper (1= /2) critical point
of the standard normal distribution}
then 7(k,sm,):=0
endif
{the lag k autocorrelation is statistically neg-
ligible at the confidence level 1 — [y}
Correlation := Correlation+|7(k, sm,)|;
enddo
if ((Correlation=0) and
AcceptableSize)
then
{accept the current batch size since the pre-
vious batch size has already given negligible
correlations}
m* = sm,;
Uncorrelated := true
{the batch size m* of uncorrelated batch
means has been selected}
elsif ( Correlation=0) then
{ start collecting next observations for testing
larger batch size}
AcceptableSize := true
{ autocorrelations for the current batch size
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are negligible but they were not negligible for
the previous batch size, thus the next batch
size should be considered}

endif

end TestCorrelation;

procedure FEstimation;

{sequentially calculate estimates and test
their precision until the required precision is
reached}

begin o

calculate the mean X (kp.,m), its variance
62X (kpe,m)], and the relative half width e
of the confidence intervals at the confidence
level (1 — «):

€ =ty 1,1-a/20(X (kbe, m)] /X (kpe, m),

using the whole sequence of k. data items
stored in the ReferenceSequence;
{apply Eqs. (17)-(19), for ky := kpe, m :=
m* and X;(m) := X;(m)}

if ((€ > €nar) and (kbe mod 30 =
0)) then
{the additional test of accuracy of estima-
tors after consolidation of ky. batch means
from the ReferenceSequence into ky, = 30
means of longer batches stored in the Anal-
ysedSequence; see the recommendations in

Schmeiser [1982]}
m = kpe/30;
for 5 :=1 to 30 do

calculate the mean ?(kbo, mm*), its variance
621X (kpo, mm*)], and the relative half width
€ of the confidence interval at the confidence

level (1 — «):

€=
tkbafl,lfa/2&[y(kboa mm*)}/Y(kbo, mm*)’
from the sequence of 30 data items stored in

r
Yj(mm*) i= 3700 X o1y (M) /m;

the AnalyzedSequence;
{apply Eqs. (17)-(19), for ky,:= 30, m:=
mm*, X;(m) :=Y;(mm*)}
enddo
endif
if (€< éma)
{ the required precision has been reached}
then write (‘the required precision
of results has been obtained after’, n, +
kpem™, ‘observations recorded’);
StopSimulation := true
elsif (n, + (kpe + 1)m* < nyye,) then
{kpe batch means of size m* have been used
to estimate the mean ., but the required
precision has not been reached yet; collect the
next batch of m* observations and store their
mean in the ReferenceSequence}
sum := 0;
for 7 := 1 to m* do
get the observation xj, pm«y;;
sum = Sum -+ T, m=4;

enddo

kbe = kbe + 17

Xk, (m*) == sum/m*
else

{ the required precision has not been reached;
too short the simulation run assumed}

write (‘the required accuracy can
not, be reached; either restart the simulation
using a new seed (seeds) of random number
generator, or increase N, Or increase «, or
increase €4, );
{for obtaining a new sequence of pseudoran-
dom numbers, independent from the previous
one, assume the last number from the previ-
ous sequence as the first number of the new
sequence}

StopSimulation :=
endif

end Estimation;

true

begin {main procedure}

StopSimulation := false ;
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{a condition of stopping the simulation has
not been met yet}

AcceptableSize := false ;
{a batch size for uncorrelated batch means
has not been found yet}

Uncorrelated := false ;
{the batch size for uncorrelated batch means
has not been determined yet}

€ := 1— €maz ;
{the initial precision € > €maz }
1= 1;

{having discarded n, observations, collect
the mext observations starting from the ob-
servation (n, + 1)st}
DetermineBatchSize;
{if the batch size m* has been selected then
the ReferenceSequence contains sky, batch
means of size m*/s and the AnalysedSe-
quence contains ky, batch means of size m*}
ke 1= ko
{the size of the ReferenceSequence at the be-
ginning of estimation}
for j := 1 to k. do
{prepare data for estimation; consolidate
sky, batch means of size m, = m*/s in
the ReferenceSequence into ky. = ky, batch
means of size m*}

Xj(m*) =370 X(j—l)s—i-r(mO)/s

enddo

while ( Uncorrelated and

(not StopSimulation))

do
{ sequentially calculate and test the precision
of the estimators until the required precision
or the maximum length of simulation run is
reached}
Estimation;

enddo

write (‘the final relative precision:’,
100¢%, ‘the final 100(1 — «)% confidence

interval:’ X (kpe, m*)[1 = ] ) ;

end BatchMeansAnalysis.

In practice, the last procedure often uses
a sequential search for the batch size of
uncorrelated batch means rather than the
sequential stopping rule for the simulation
run (sequential testing the precision of esti-
mates). This happens because usually many
more batch means have to be tested dur-
ing the first stage (testing against autocor-
relation) than during the second stage (test-
ing the precision of the results). The num-
ber of observations recorded, ky,m*, when
the mean and the width of confidence in-
tervals are to be calculated for the first
time is usually much larger than it is re-
quired for obtaining the required level of ac-
curacy [Schmeiser 1982]. From this point of
view, the spectral method of analysis is more
thrifty. On the other hand, the method of
batch means uses a very simple estimator of
the variance when the width of confidence
intervals is analysed. Exhaustive compara-
tive studies of both procedures have not been
performed yet, but the reported results in-
dicate that the spectral method is usually
more efficient, both in the sense of the cover-
age recorded in reference experiments and in
the sense of the final simulation run lengths
for obtaining the required accuracy of the re-
sults, at least in investigated classes of pro-
cesses; [Pawlikowski and Asgarkhani 1988].

4 SUMMARY AND GENERAL
COMMENTS

We have discussed in detail methods for
dealing with the main phenomena encoun-
tered in steady-state simulation of queue-
ing processes: the inherent initial nonsta-
tionarity and the permanent autocorrela-
tion of collected observations. The empha-
sis is on methods for the sequential anal-



4 SUMMARY AND GENERAL COMMENTS

49

ysis of simulation output data, bearing in
mind their possible implementation in user-
friendly simulation packages, which would
produce results automatically. In such a
context, methods of analysis based on sin-
gle simulation runs seem to be more attrac-
tive than the methods of independent repli-
cations.

The survey has been limited to analysis
of a single measure of performance, namely,
the point and interval estimates of the sam-
ple mean. Nevertheless, this methodology
can easily be modified to estimate other per-
formance measures, as long as their estima-
tors are based on cumulative statistics. For
example, sequential analysis of simulation
output data can easily be applied to estimate
the variance, or the probability that the
analysed variate lies in some fixed interval
[Welch 1983, Sec. 6.3]. It cannot be applied
directly to estimate quantiles, since their es-
timators require that sequences of collected
observations be pre-sorted and as such are
not amenable to cumulative statistics calcu-
lated while the simulation is in progress. Es-
timation of quantiles by using the method
of spectral analysis is discussed in Heidel-
berger and Lewis [1984]; the same applica-
tion of the regenerative method is considered
in Iglehart [1976] and Seila [1982a]. Compu-
tational problems associated with quantile
estimation are discussed in Jain and Chlam-
tac [1985] and Raatikainen [1987, 1988].

The methodology of simultaneous analy-
sis of more than one measure of performance
during one simulation experiment is much
less advanced than the methodology of uni-
variate estimation discussed in this paper.
The main theoretical problems of multivari-
ate estimation and the methods which can
be used for determining the confidence re-
gions in such multiresponse simulation ex-
periments are discussed in Charnes and Kel-

ton [1988], Chen and Seila [1987], Friedman
[1984], Law and Kelton [1982a, p. 308], and
Seila [1982b, 1983]. The initialization bias in
multiresponse simulation can be controlled
by applying a statistical test proposed by
Schruben [1981]. Various variance reduction
techniques that are applicable in this kind
of simulation experiments are discussed in
Bauer et al. [1987], Rubinstein and Mar-
cus [1985], Venkartraman and Wilson [1986],
and Yang and Nelson [1988].

Specific statistical problems accompany-
ing comparative simulation studies of alter-
native systems are surveyed in Law and Kel-
ton [1982a, Chap. 9]; see also Balmer [1987],
Clark [1986], Friedman and Friedman [1986],
and Goldsman [1983, 1986]. (Note that in
these applications the bias of estimators is
not important, as long as the estimators are
equally biased.) Stochastic simulation is also
used for sensitivity analysis of performance
measures and optimization of various sys-
tems and processes under uncertainty. Spe-
cial methods for estimating the gradient of
a performance measure with respect to a se-
lected input parameter (e.g., the changes of
the mean delay of messages in a communica-
tion network with respect to the mean mes-
sage length) during a single simulation run
are discussed [Ho 1987; Ho and Cao 1983,
Ho et al. 1983; Reiman and Weiss 1986; Ru-
binstein 1989; Suri and Zazanis 1988].

This paper is restricted to the statisti-
cal analysis of simulation output data, but
practitioners are aware that that is not the
only problem that must be overcome in ob-
taining useful results. Before observations
are collected, the processes for which per-
formance is to be investigated have to be
properly modeled, and each model should be
validated and verified to make the simula-
tion experiments credible. Various aspects
of the validation and verification of simu-
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lation models are discussed in [Banks and
Carson 1984; Bulgren 1982; Law and Kelton
1982a; Sargent 1986; Shannon 1981; Velayas
and Levary 1987].

Having presented methods of data collec-
tion and analysis which are used in stochas-
tic steady-state simulation, one can conclude
that no definite conclusions can be made
about their applicability. The need for more
exhaustive comparative studies expressed by
Schriber and Andrews [1981] still to be a live
issue.

The length of simulation runs remains a
critical issue, especially in the case of sim-
ulation studies of complex systems, which
often can be performed only if a technique
for speeding up the process of data collec-
tion is applied. In this context an important
role could be played by the variance reduc-
tion techniques, which, by reducing the vari-
ance, narrow confidence intervals and conse-
quently reduce the number of steps needed
by sequential procedures for reaching the re-
quired accuracy of results. But, as was men-
tioned in Introduction, practical implemen-
tations of variance reduction techniques have
been reported infrequently. Among the re-
cently published ones are those in Izydor-
czyk et al. [1984] and Walrand [1988]. An-
other area where the duration of simulation
can be very critical is the analysis of perfor-
mance measures that depend on events oc-
curing infrequently. Some techniques pro-
posed for speeding up rare events simula-
tion are discussed in Cottrell [1983], Parekh
and Walrand [1989], and Shahabuddin et al.
[1988].

Performance evaluation studies based on
simulation experiments can be accellerated
by the decomposition of analysed systems
into subsystems, which are modelled sepa-
rately, applying both simulation and ana-
lytical models, mutually interacting if neces-

sary. The efficiency of such an approach was
studied extensively in Blum et al. [1985],
in the context of queuing network models of
computer systems. A survey of hybrid tech-
niques can be found in Shanthikumar [1983];
see also Frost et al. [1988] and Kurose and
Mouftah [1988]. The time needed for sim-
ulation studies can also be significantly re-
duced in multiprocessor systems. In such
an environment individual processors can be
used for running independent replications of
one simulation experiment, or, in a more so-
phisticated solution, logical processes occur-
ing during one simulation run can be ex-
ecuted in parallel by different processors.
The main problem encountered in the lat-
ter case is the synchronization among pro-
cesses run on different processors. There ex-
ists a danger that the contribution of large
synchronization overheads will actually slow
the simulation experiment. Various tech-
niques of distributed and parallel simulation
are discussed in Chandy and Misra [1981],
Fujimoto [1988], Misra [1986], Nicol [1988a,
1988b], Reynolds [1988], Unger [1988], and
Wagner and Lazowsa[1989]; see also Baik
and Zeigler [1985], DeCegama [1987], Kr-
ishnamurthy et al. [1985], Kumar [1986],
and Kurose and Mouftah [1988]. Specific
problems relating to the statistical analy-
sis of output data which accompany dis-
tributed simulation are discussed in Heidel-
berger [1986].

The diversity of methodological ap-
proaches and the complexity of some sta-
tistical techniques used in simulation out-
put analysis has motivated attempts to de-
velop expert systems that advise on select-
ing the best simulation methodology for ac-
complishing the required statistical compu-
tations; see, for example, Haddock [1987],
Hahn [1985], Hand [1985], Nielsen [1986],
and O’keefe [1986]. One of the first sta-
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tistical expert systems specifically oriented
towards steady-state simulation is discussed
in Mellichamp and Park [1989]. It is hoped
that further developments in the area of
expert systems and applied statistics will
make possible to design fully automated,
knowledge-based simulation packages.

APPENDIX A. ELEMENTARY STA-
TISTICAL CONCEPTS

Appendix A contains elementary statistical
concepts needed to understand the problems
discussed in the paper. A deeper and more
detailed discussion of the subject can be
found in the numerous textbooks on applied
probability theory and statistics.

Stochastic simulation involves experi-
ments which mimic various events by means
of numbers generated by (pseudo)-random
numbers generators. Therefore, it is natural
that the analysis of the output data should
be based on the methods of statistical in-
ference. These methods can help to esti-
mate the characteristics and/or parameters
of simulated processes. Accepting the ran-
dom nature of simulation output data, one
should consider any sequence xy,xs,--- , 2,
of observations collected during such experi-
ments as the sequence of realizations of ran-
dom variables X1, Xo,--- , X,,, sampled from
a stochastic process X () at instants of time
t =t;,i=12---,n If the process X(t)
is stationary, what means that its stochas-
tic characteristics are time invariant, then
the random variables X, X5, ---,X,, have
the same (but unknown) probability distri-
bution. In the context of this paper, the pro-
cess is stationary if it enters its steady-state
region, and steady state simulation is con-
cerned with modeling and analysis of such
processes only.

o1

Any function f(Xy, Xo,---,X,) of ran-
dom variables Xi, Xo,---, X, is called a
statistic. A statistic 6(X;, Xo, -+, X,,) used

for estimating a parameter 6 of the distribu-
tion of the analysed process X(t) is called
an estimator of 6. The number of indepen-
dent random variables used in the definition
of a statistic is called its number of degrees
of freedom or, simply, its degrees of free-
dom. The value é(:z;l,a:g, e, xy,), that is,
the value of function é(Xl, Xo, -+, X,) fora
given sequence of observations xq, xa, -+ , T,
is known as an estimate of 0. It means that
estimators, as functions of random variables,
are random variables themselves, and esti-
mates are simply realisations of these ran-
dom variables.

A good estimator should be wunbiased;
see [Trivedi 1982] for other desired proper-
ties of estimators. If the estimator 6% =
é*(Xl, X2 .-+, X,) of the parameter 6 is un-
biased, then its statistical average

~

E[0* (X1, Xo,---, X,)] =0 (A1)
For example, it can be shown that the esti-
mator X (n) given in Equation (1) is an unbi-
ased estimator of the average p, of a station-
ary process X (t), since E[X(n)] = . Simi-
larly, one can show that if random variables
X1, X5, -+, X, are independent and identi-
cally distributed, then the unbiased estima-
tor of the variance 0?[X] of the stationary

process X (t) is

- XZ—YTL 2
S 1 = X))

o’ X] = 1)

(A2)

i=1
while the unbiaseg estimator of the variance
of the estimator X (n) is

o[X () = =,

n

(A3)

see Equation (4).
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Theoretical justification for using X (n)
as the estimator of p, is provided by the law
of large numbers, which states that if obser-
vations xi, 9, - ,x, are realizations of in-
dependent random variables, taken from a
stationary process X (t), then

lim, o PIX ()~ <=1, (A4)

for any € > 0.

To construct confidence intervals for
X(n) we have to assume a probability
distribution for X(n). If X(n) is the
weighted sum of independent and nor-
mally distributed random variables X;,i =
1,2,---,n, with unknown variance o?[X],
then it can be proved that the statistic

(A5)

has the standard (Student) t¢-distribution
with (n-1) degrees of freedom. Using this
distribution, one can easily find the value
L =1tp_11-a/2 forit, given a,0 < a <1,

P(—=th-11-ap2 <Th 1<ty 11-a/2)

=1-a. (A6)

Consequently, the confidence interval of i,
at the (1 — «) confidence level is given by

E(Y(n) - tn—l,l—a/i‘s'[y(n)] < Yo
< X(n) + tn1,1-020[X (n)]) = 1 — o, (A7)

see Figure 1. The limiting ¢-distribution, for
n — oo is the standard normal distribution
described by the density function
[
V2r
In practice, the approximation of a t-
distribution by the normal distribution is al-
ready acceptable for samples of n > 30 ob-
servations. In such cases, one can easily find
the value z = z;_,/2 from the standard nor-
mal distribution for which

p.(2) exp(—2z?). (A8)

which is a good approximation for the confi-
dence interval of p, at the (1—a) confidence
level if n > 30. In the case of multivariate
estimation, confidence intervals are replaced
by confidence regions (rectangles, etc.)

A justification of the assumption that the
estimator X (n) is a normal random variable
even if observations x1,x9,---,x, are not
is given by the central limit theorem. This
theorem says that the sums of independent
and identically distributed random variables
tend to be normally distributed, even though
the components are not, if n — oo. From
this theorem, one can show that the limit
distribution (for n — o0) of the random vari-
able

X(n)—pa

Z = SXijve

(A10)

is given by Equation (A8). Note that it
requires the variance o?[X] of the ran-
dom variables X, Xo,---, X, to be known.
Since this is not the case in practice,
if Xi1,Xs,---,X,, are not normally dis-
tributed, the limiting distribution of the
statistics T,,_; can be only approximately
normal (even if the variables are statisti-
cally independent). The quality of this ap-
proximation depends on the accuracy of the
variance estimator.

APPENDIX B. SPECTRAL ANALYSIS
OF VARIANCE.

As was mentioned in Section 1, Heidelberger
and Welch [1981a, 1981b] proposed estimat-
ing the variance of the estimator of mean in
an autocorrelated sequence of observations
from the smoothed averaged periodogram of
this sequence; see Equations (45)-(50). The



4 SUMMARY AND GENERAL COMMENTS

53

series of approximations they propose can
be summarised as follows.

Procedure SpectralVarianceAnalysis;
{Preconditions:

Ty, Ty, Ty A sequence of n, ob-
servations taken from a stationary process
(n, > 100, the default value is n, = 100).
Nap The number of points of the aver-
aged periodogram used to fit it to a polyno-
mial by applying the least squares procedure
(ngp < myp/4, the default value is n,, = 25).
0 The degree of the polynomial fitted to
the logarithm of the averaged periodogram
(the default value is 0 = 2).

C, A normalizing constant, chosen to
make p,(0) approximately unbiased (for the
default values of n,, and 0, take C, = 0.882
[Heidelberger and Welch, Tablel], where
these constants are denoted as K, d, and
C1(K, d), respectively)}

Step 1
Calculate 2,,, values of the periodogram of

the sequence x1, 25, -+, 2p,:
J
(L)

2
:|Za: exp[— mi(s = 1)j

(ef. Eqs. (45) and (46))
for j =1,2,--+,2ng,, and i = /—1;

]I /nw, (Bl

Step 2
Calculate n,, values of the function {L(fj)},

for j = 1,2,--- ,ngy; where fj = (45 —
1)/2n,, and
L(f7)

= log{[T1((2) — 1)/n,) + (27 /n)]/2}; (B2)

Step 3 Apply the least squares extrapola-
tion procedure {see, for example, Press et

al. [1986, p. 509]} for determining the co-
efficient a, in the polynomial

)
- Z asfsv
s=0

fitted to the function {L(fj) + 0.270},
j - 1727"' y Naps
{the value a, is an unbiased estimate of log

P2(0)}

(B3)

Step 4

Calculate

ﬁm(o) - Cgeao; (B4)
62 [X(ny)] = a(0)/ne; (B5)

determine k;

{the degrees of freedom k for the x* distri-
bution of 62,[X(ny)], for given na, and 6,
are given in Heidelberger and Welch [1981,
Table 1] and denoted there by Co(K,d); for
ny, = 100,n,p =25 and § =2: kK =T}

end Spectral Variance Analysis.

If an analysed sequence of output data
consists of n, batch means X;(m), Xo(m),

-, X,,(m), each over m observations,
instead of n, individual observations i,
g, -+, X, as above, the batch means
should replace individual observations in
Equation (B1).  Then the periodogram
{TI(j/n)} and the logarithm of the aver-
aged periodogram {L(fj)} are functions of
the sequence X1(m), Xo(m), -+, X, (m),
and Equation (B4) gives us the estimate
ﬁy(m)(O), the spectral density function of
this sequence of batch means at f = 0. Now,
with 7, meaning the number of batch means,
each over m observations, we obtain
Px(0)

= MmPx m)(0); (B6)
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see Equation (49). Thus, the estimator of
the variance of the mean X (n,m), over n,m
individual observations, is

~2 IV % (m)(0)
62, (X (n,m)] = 2.

(B7)

The degrees of freedom can be determined
as in the previous case; see the comment in
Step 4 of the procedure.
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