Widening the Knowledge Acquisition Bottleneck for Intelligent Tutoring Systems
Pramuditha Suraweera
(supervisor Tanja Mitrovic)
Department of Computer Science
University of Canterbury
Abstract
CAS was developed to generate the knowledge required for constraintbased tutoring systems, reducing the effort as well as the amount of expertise in knowledge engineering and programming required. Constraint-based modelling is a student modelling technique that assists in somewhat easing the knowledge acquisition bottleneck due to the abstract representation. CAS expects the domain expert to provide an ontology of the domain, example problems and their solutions. It uses machine learning techniques to reason with the information provided by the domain expert for generating a domain model.
A series of evaluation studies of this research produced promising results. The initial evaluation revealed that the task of composing an ontology of the domain assisted with the manual composition of a domain model. The second study showed that CAS was effective in generating constraints for the three vastly different domains of database modelling, data normalisation and fraction addition. The final study demonstrated that CAS was also effective in generating constraints when assisted by novice ITS authors, producing constraint sets that were over 90% complete.