
621

Improved Algorithms for the K-Maximum Subarray
Problem for Small K

Sung E. Bae and Tadao Takaoka

Department of Computer Science and Software Engineering
University of Canterbury, Christchurch, New Zealand
{seb43,tad}@cosc.canterbury.ac.nz

Abstract. The maximum subarray problem for a one- or two-dimensional array
is to find the array portion that maiximizes the sum of array elements in it. The
K-maximum subarray problem is to find the K subarrays with largest sums. We
improve the time complexity for the one-dimensional case from O(min{K +
n log2 n, n

√
K}) for 0 ≤ K ≤ n(n − 1)/2 to O(n log K + K2) for K ≤ n.

The latter is better when K ≤ √n log n. If we simply extend this result to the
two-dimensional case, we will have the complexity of O(n3 log K +K2n2). We
improve this complexity to O(n3) for K ≤ √n.

1 Introduction

The maximum subarray problem was first described by Bentley in his literature Pro-
gramming Pearls [4, 5] as an example to discuss the efficiency of computer programs.
This problem determines an array portion that sums to the maximum value with re-
spect to all possible array portions within the input array. When the input array is two-
dimensional, we find a rectangular subarray with the largest possible sum.

If all elements of an array are non-negative, this problem is trivial, as the entire
array represents the solution. Similarly, if all elements are non-positive, the solution is
empty with value 0. So we consider a data set containing both positive and negative
values. In practice, a bitmap image has all non-negative pixel values. When the average
is subtracted from each pixel, we can apply the maximum subarray algorithm to find
the brightest area within the image.

For the one-dimensional case, we have an optimal linear time sequential solution.
A simple extension of this solution can solve the two-dimensional problem in O(m2n)
time for an m × n array (m ≤ n), which is cubic when m = n [4, 5]. In this paper, if
only n appears in complexities for the two-dimensional case, we assume m = n. The
sub-cubic time solution based on Takaoka’s sub-cubic distance matrix multiplication
algorithm [14] is given by Tamaki and Tokuyama [17], which is further simplified by
Takaoka [15]. In the context of parallel computations, time and cost optimal PRAM
and mesh algorithms for the one-dimensional case are described in [10]. For the two-
dimensional case, EREW PRAM solutions achieving O(log n) time with O(n3/ log n)
processors are given in [11, 18] and comparable result on interconnection networks
is given in [12]. The EREW PRAM version of the subcubic algorithm in [15, 17] is
given in [1], which also features a VLSI algorithm based on the technique introduced

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 621–631, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.2 Optimize For Fast Web View: Yes Embed Thumbnails: Yes Auto-Rotate Pages: Individually Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [600 600] dpi Paper Size: [439.37 666.142] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 900 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Cancel JobEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Convert All Colors to sRGB Intent: DefaultWorking Spaces: Grayscale ICC Profile: RGB ICC Profile: sRGB IEC61966-2.1 CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: No ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: NoOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /PageByPage /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [600 600]>> setpagedevice

622 Sung E. Bae and Tadao Takaoka

in Bentley’s paper. This VLSI algorithm for the maximum subarray problem achieves
T = m + n − 2 steps, which is O(n) time using O(n2) sized hardware circuit.

Finding K maximum sums is a natural extension. This problem is discussed in [2]
and [3]. The former provides O(Kn) and O(Km2n) time solutions for the one- and
two-dimensional cases in the course of development of a systolic array algorithm of
O(n) time using O(n2) size hardware for the two-dimensional case. The latter brings
the worst case time down to O(min{K+n log2 n, n

√
K}) for a one-dimensional array.

This paper reviews the former solution and tunes it up for greater speed. Specifically
we achieve O(n log K + K2) time for the one-dimensional case. This is better than [3]
when K ≤ √

n log n.
If we use the above algorithm directly for the two-dimensional maximum subar-

ray problem with an (n, n)-array, we have O(n3 log K + n2K2) time complexity. We
improve this time complexity to O(n3 + n2K2), which is O(n3) when K ≤ √

n.
A related topic is a similar problem with K disjoint subarrays, which may be more

practical in some applications. Within this category, we can define several problems, and
only the one-dimensional case received some attention, especially in bio-informatics.
Further discussion on a possible extension will be made in the section of concluding
remarks.

2 Review of the Maximum Subarray Problem

We give a two-dimensional array a[1..m, 1..n] as input data set. The maximum subarray
problem is to find a rectangular portion a[r1..r2, c1..c2] such that the sum of contained
elements should be greater than or equal to the sum of any other rectangular portions of
the data set. We suppose the upper-left corner has coordinates (1,1).

Example 1. : Let a be given by

a =

−1 2 −3 5

2 −4 −6 −8
3 −2 9 −9
1 −3 5 −7

−4 −8
2 −5[
−1 10

8 −2

]
3 −3
4 1
−5 2

2 −6

The maximum subarray is the array
portion a[3..4, 5..6] surrounded by in-
ner brackets, whose sum is 15.

Bentley introduced Kadane’s algorithm that finds the maximum sum within a one-
dimensional array, whose time is linear [4], and extended it to two-dimensions.

We use another O(n) algorithm given in [2]. It has its central algorithmic concept
in the prefix sum. The prefix sums sum[1..n] of a one-dimensional array a[1..n] are
computed by

Algorithm 1 Prefix Sum

sum[0]←0;

for i←1 to n do sum[i]←sum[i-1]+a[i];

As sum[x] =
∑x

i=1 a[i], the sum of a[x..y] is computed by the subtraction of these
prefix sums such as:

y∑
i=x

a[i] = sum[y] − sum[x − 1]

Improved Algorithms for the K-Maximum Subarray Problem for Small K 623

To yield the maximum sum from a one-dimensional array, we have to find indices
x, y that maximize

∑y
i=x a[i]. The notations min and max are used for variables and

MAX and MIN are used for operations.
Let mini be the minimum prefix sum for an array portion a[1..i − 1]. Then the

following lemma is obvious.

Lemma 1. For all x, y ∈ [1..n], and x ≤ y,
MAX1≤x≤y≤n{

∑y

i=x
a[i]} = MAX1≤x≤y≤n{sum[y]− sum[x− 1]}

= MAX1≤y≤n{sum[y]−MIN1≤x≤y{sum[x− 1]}}= MAX1≤y≤n{sum[y]−miny}
Based on Lemma 1, we can design the following linear time algorithm that finds the
maximum sum in a one-dimensional array. Comments are given by //.

Algorithm 2 Maximum Sum in a one-dimensional array

min←0; //minimum prefix sum
M←0; //current maximum sum, initially 0 for empty subarray
sum[0]←0;

for i←1 to n do begin

sum[i]←sum[i-1]+a[i];

cand←sum[i]-min; //min=mini

M←MAX{M,cand};
min←MIN{min,sum[i]};//min=mini+1

end.

While we accumulate sum[i], the prefix sum, we also maintain min, the minimum of
the preceding prefix sums. By subtracting min from sum[i], we have a candidate for
the maximum sum. At the end, M is the maximum sum.

3 Finding the K Maximum Sums in O(Kn) Time

Based on the algorithm in Section 2, let us proceed to discuss the K-maximum subarray
problem, again for the one-dimensional case.

Instead of having a single variable that book-keeps the minimum prefix sum, we
maintain a list of K minimum prefix sums, sorted in non-decreasing order.

Let mini be the list of K minimum prefix sums for a[1..i−1] given by {mini[1]· · · ,
mini[K]}, sorted in non-decreasing order. The initial value for mini is given by min =
{0, +∞· · · , +∞}. We also maintain the list of candidate sums produced from sum[i],
sorted in non-decreasing order. This list candi is given by {sum[i]−mini[1], sum[i]−
mini[2]· · · ,sum[i]−mini[K]} . Let maxi be the list of K maximum sums for a[1..i].
This list is maintained in M in Algorithms 3 and 4 sorted in non-increasing order. When
the algorithm ends, M contains the final solution maxn. The merged list of two sorted
sequences x and y are denoted by merge(x, y). We have the following lemma.

Lemma 2. maxi+1 is the list of the K maximum elements of merge(maxi, candi+1)

Array names are used to denote sets, lists, etc. in the subsequent descriptions. We
maintain the list of K minimum prefix sums in min. Each time a prefix sum is com-
puted, we subtract these K minima from this prefix sum, and prepare a list cand of

624 Sung E. Bae and Tadao Takaoka

candidate K maximum values. These K values are merged with the current maximum
sums stored in M , from which we choose the largest K values. After this, we insert the
prefix sum to the list of K minimum prefix sums for the next iteration. When a new
entry is inserted, the list of K minimum prefix sums has K + 1 items. By discarding
the largest one, we keep the size of this list to be fixed at K . Of course, if this sum is
found to be greater than all current K minima, no insertion is made.

Note that we initialize the list of tentative solutions by M = {0,−∞· · · ,−∞}.
The line 8 in the algorithm preserves the loop-invariant from step i to step i + 1 as

stated in Lemma 2. At the end, M is the solution.

Algorithm 3 K maximum sums in a one-dimensional array

1: for k←1 to K do begin

2: min[k]←∞; M[k]←−∞;

3: end;

4: sum[0]←0; min[1]←0; M[1]←0;

5: for i←1 to n do begin

6: sum[i]←sum[i-1]+a[i];

7: for k←1 to K do cand[k]←sum[i]-min[k];

8: M←K largest elements of merge(M,cand);

9: insert sum[i] into min;
10: end.

At each iteration, it takes O(K) time for generating the candidate list, and O(K)
time for merging this list and the list of current maximum sums. Inserting a prefix sum
into the list of minimum prefix sums depends on what data structure is used. If it is
a simple array or list, the insertion takes O(K) time, which establishes O(K) overall
time for each iteration. Using an advanced data structure makes little significance at this
point due to line 7 and 8 where we anyway need to spend O(K) time generating the
candidate list and the list of K maximum sums at each iteration.

As we need to perform n iterations, the total time complexity is O(Kn). When
K = 1, this result is comparable to O(n) time of Kadane’s algorithm and Algorithm 2.

4 Improved Algorithm for K Maximum Sums for Small K

Previously, we generated the list of candidates by subtracting the K minimum prefix
sums from each prefix sum, which results in production of Kn candidates in total. K
maximum sums are basically selected from this pool of Kn candidates. It will now be
discussed that we do not need to generate such a number of candidates when K ≤ n.

Let us assume we have in mini[1..K] the list of K minimum prefix sums to be
subtracted from sum[i]. This list is sorted in non-decreasing order. In Algorithm 4,
mini is given by min at the end of the i-th iteration.

Let candi[k] = sum[i]−mini[k] for k = 1 · · · , K . As mini is sorted, the produced
list of candidates candi is sorted in non-increasing order, and has the first item candi[1]
being the largest candidate produced from sum[i].

We first produce n samples of cand1[1] · · · , candn[1] and let them be elements of a
list sample.

Improved Algorithms for the K-Maximum Subarray Problem for Small K 625

sample[i] = candi[1] = sum[i]− mini[1], (i = 1 · · · , n)

We then select K largest values of sample. Let us denote the list containing them
by Ksamples, which is sorted in non-increasing order, given by

Ksamples = {sample[x1], sample[x2] · · · , sample[xK]},
where x1 · · · , xK are the indices of those selected samples.

It is easily observed that if sample[w], the largest candidate produced from sum[w],
does not even qualify for Ksamples, no candidate produced from sum[w] can become
one of the final K maximum sums as we know there are already at least K sums greater
than or equal to them.

When Ksamples does not include sample[w], the full generation of candw[1..K]
is thus avoided. In such a case, we can skip to the next iteration saving O(K) time.
We generate candidates only from sum[xi], which produced selected candidates for
Ksamples.

4.1 Pre-process

We note that we do not need mini[1..K] for all i ∈ [1..n] before the sampling and
selection process. We only need mini[1] for i = 1 · · · , n.

During the pre-process, we traverse the input array a[1..n] and compute the prefix
sum sum[1..n] in O(n) time. Within this time frame, we find the minimum prefix sum
(mini[1] only) for each sum[i], as mini[1] is the minimum of sum[j] for 1 ≤ j ≤ i−1.
Full lists of K minimum prefix sums for each sum[i] are not produced during this pre-
process.

The K-th maximum of this sample is selected by a linear time selection algorithm.
Then we filter out values smaller than the K-th maximum, being left with the K largest
samples. We sort and store those samples in Ksamples. We can test whether an item
is in Ksamples by comparing it with sample[xK], the last element in the list.

4.2 Candidate Generation and Selection

Inside the “for” loop starting at line 10 there are two parts, Part I and Part II. We consider
time for each part separately.

Part I is for the generation of candi and maintaining the tentative solution set M .
The generation of candi is performed when the i-th sample is included in Ksamples.
Thus Part I is performed K times.

The following routine, Part II, is the insertion of prefix sum into the sorted list of
minimum prefix sums. Unlike Part I, all n prefix sums should be considered. We first
examine if a new prefix sum ever needs to be inserted, and if so we need to find an
appropriate position for the new entry in min. This min contains K minimum pre-
fix sums, and if there are more than K items, we may need to drop the largest item.
The choice of an appropriate data structure for min is important to determine the total
complexity. Besides min, all other lists, cand and M , may be simple one-dimensional
arrays. We assume min[k] is the k-th smallest element of min when min is regarded as
a set regardless of the actual data structure of min. We choose a 2-3 tree with level-link
as a suitable data structure.

626 Sung E. Bae and Tadao Takaoka

A 2-3 tree keeps all the leaf nodes sorted. A 2-3 tree with level-link described in [7]
has all the internal nodes at the same depth connected, enabling finger searches. Finger
search trees with constant update time are discussed in [6, 9], but they both require
logarithmic time for positioning and do not improve overall time complexity. Now we
analyze each part.

Part I. For Part I, generating the candidate list involves access to the list of minimum
prefix sums. If an ordinary 2-3 tree is used, accessing each of min[1..K] costs O(logK)
time. Since we need to access all min[1..K] sequentially to generate candidates, this
access cost seems rather expensive. However if a 2-3 tree with level-link is used, after
initial search for min[1] spending O(logK), subsequent elements are found in O(1)
time due to finger search. As actual generation of K candidates requires O(K) time,
this initial O(logK) access time is absorbed. The total time for Part I over K iterations
is therefore O(K2).

Part II. For Part II, finding position for a new entry and actual insertion is done in
O(log K) time. When there are more than K items, deletion of the largest item and
update of the tree costs another O(log K) time. For n iterations, the total time for Part
II is O(n log K).

Algorithm 4 Improved algorithm for K maximum sums in a one-dimensional array

//[INITIALIZATION]
1: for k←1 to K do begin min[k]←∞; M[k]←−∞; end;

2: sum[0]←0; min[1]←0; M[1]←0;

//[PRE-PROCESS]
3: for i←1 to n do begin

4: sum[i]←sum[i-1]+a[i];
//sample for initial K large values

5: sample[i]←sum[i]-min[1];

6: if sum[i] < min[1] then min[1]←sum[i];
7: end;

8: Ksamples←K largest sorted values of sample[1..n];

//[CANDIDATE GENERATION and SELECTION]
9: min[1]←0;

10: for i←1 to n do begin

11: if sum[i]-min[1] > sample[xK] then begin

//PART I: Generate cand and update M
12: for k←1 to K do cand[k]←sum[i]-min[k];

13: M←K largest values of merge(M,cand);
14: end;

//PART II: Update min
15: insert sum[i] into min;
16: end.

Improved Algorithms for the K-Maximum Subarray Problem for Small K 627

4.3 Total Time

Using the data structure for min described above, the overall time including Part I and
Part II is thus O(n log K+K2). The time for the preprocessing (sampling, selection and
screening) is O(n) which is absorbed. Compared with O(min{K + n log2 n, n

√
K})

time by [3], this algorithm is faster when K ≤ √
n log n.

We can organize the if-statement at line 11 into a while-statement. We keep com-
puting candidates as sum[i]−min[k] for k = 1, 2 · · · , K , while the condition sum[i]−
min[k] > sample[xK] is satisfied, and only those candidates can be inserted into M
with unqualified sums being deleted from M . Also the right-hand side of the condition
can be replaced by the minimum of M instead of the fixed sample[xK]. This modifi-
cation can improve the average performance, but the worst case behavior is not clear at
present.

5 Speed-Up for Two Dimensions

If we use the algorithm in the previous section for an (n, n)-array, we have an
O(n3 log K) time algorithm. We speed up the algorithm for small K in the two-di-
mensional case based on the divide-and-conquer method. To remove the factor of log K
from the complexity, we do not maintain sorted order for K-tuples.

5.1 Generalization of Distance Matrix Multiplication

The distance matrix multiplication is to compute the following distance product C =
AB for two (n, n)-matrices A = [aij] and B = [bij] whose elements are real numbers.

cij = MINn
k=1{aik + bkj}, (i, j = 1 · · · , n) · · · (1)

The operation in the right-hand side of (1) is called distance matrix multiplication of
MIN-version, and A and B are called distance matrices in this context. If we use MAX
instead we call it the MAX-version.

Now we divide A, B, and C into (K, K)-submatrices for N = n/K as follows:

A1,1 · · · A1,N

· · ·
AN,1 · · · AN,N

B1,1 · · · B1,N

· · ·
BN,1 · · · BN,N

 =

C1,1 · · · C1,N

· · ·
CN,1 · · · CN,N

Matrix C can be computed by

Cij = MINN
k=1{AikBkj}(i, j = 1 · · · , N) · · · (2)

where the product of submatrices is defined similarly to (1) and the MIN operation is
defined on submatrices by taking the MIN operation component-wise. Since compar-
isons and additions of distances are performed in a pair, we omit counting the number of
additions for measurement of the complexity. We have N3 multiplications of distance
matrices in (2).

628 Sung E. Bae and Tadao Takaoka

To prepare for the K-maximum subarray problem, we extend equation (1) in such
a way that cij is the K-tuple of K minima of {aik + bkj |k = 1 · · · , n}. We call this
definition K-distance matrix multiplication, or simply K-matrix multiplication.

Now we generalize the MIN and MAX operations on distance matrices. Let each
element of a distance matrix be a K-tuple of real numbers such as a = (a1 · · · , aK). The
MIN operation on the two K-tuples a and b is defined by MIN{a, b} = (c1 · · · , cK),
where (c1 · · · , cK) is the list of the K smallest elements of a ∪ b. If there are equal
values in a or b, the union operation here is for multisets. Similarly we can define
MAX{a, b} = a ∪ b − (c1 · · · , cK). The extended MIN and MAX operations can be
performed by taking the smaller half and larger half from a ∪ b, which can be done in
O(K) time with the median selection algorithm and filtering process in a similar way to
those described in Section 4.1. In the following we mainly describe the MIN-version.
The MAX-version can be defined symmetrically.

If each element of distance matrices A1 and A2 is a K-tuple, the MIN operation
on A1 and A2 is defined component-wise over corresponding K-tuples. To compute
K-matrix multiplication, where each element in (1) is a K-tuple, we use the extended
MIN operation in (2), where the elements of matrix AikBkj are K-tuples.

Let us rename Aik and Bkj in the above by A and B, and consider the multipli-
cation. This time we can return all {ai1 + b1j · · · , aiK + bKj} as candidate K-tuples,
taking O(K3) time, and use the extended MIN operations in (2). Then the time for N3

products in (2) is O((n/K)3K3) = O(n3). The time for extended MIN operations in
(2) is O(Nn2K) = O(n3). Thus the total time is O(n3) for K-matrix multiplication.

5.2 Application to the K-Maximum Subarray Problem

We review the divide-and-conquer approach given in [15]. Let a two-dimensional array
a[1..m, 1..n] of real numbers be given as input data. The maximum subarray problem
here is to maximize the sum of the array portion a[k..i, l..j], that is, to obtain such
indices (k, l) and (i, j).

We assume that m ≤ n without loss of generality. We also assume that m and n are
powers of 2. We will mention the general case of m and n later.

The central algorithmic concept in this section is again that of prefix sum. We use
distance matrix multiplications of both MIN and MAX versions in this section. We
compute the prefix sums s[i, j] for array portions of a[1..i, 1..j] for all i and j with the
boundary condition s[i, 0] = s[0, j] = 0. Obviously this can be done in O(mn) time.
The outer framework of the algorithm is given below. Note that the prefix sums once
computed are used throughout recursion.

Algorithm M: Maximum subarray
1. If the array becomes one element, return its value.
2. Otherwise, if m > n, rotate the array 90 degrees.
3. Thus we assume m ≤ n.
4. Let Aleft be the solution for the left half.
5. Let Aright be the solution for the right half.
6. Let Acolumn be the solution for the column-centered problem.
7. Let the solution be the maximum of those three.

Improved Algorithms for the K-Maximum Subarray Problem for Small K 629

Here the column-centered problem is to obtain an array portion that crosses over the
central vertical line with maximum sum, and can be solved in the following way.

Acolumn = MAXi−1,n/2−1,m,n
k=0,l=0,i=1,j=n/2+1{s[i, j]− s[i, l]− s[k, j] + s[k, l]}

In the above we first fix i and k, and maximize the above by changing l and j.
Then the above problem is equivalent to maximizing the following for i = 1 · · · , m and
k = 0 · · · , i − 1.

Acolumn[i, k] = MAXn/2−1,n
l=0,j=n/2+1{−s[i, l] + s[k, l] + s[i, j] − s[k, j]}

Let s∗[i, j] = −s[j, i]. Then the above problem can further be converted into

Acolumn[i, k]=−MINn/2−1
l=0 {s[i, l]+s∗[l, k]}+MAXn

j=n/2+1{s[i, j]+s∗[j, k]} · · · (3)

The first part in the above is distance matrix multiplication of the MIN-version and
the second part is of the MAX-version. Let S1 and S2 be matrices whose (i, j) elements
are s[i, j − 1] and s[i, j +n/2] for i = 1 · · · , m; j = 1 · · · , n/2. For an arbitrary matrix
T , let T ∗ be that obtained by negating and transposing T . As the range of k is [0 .. m−1]
in S∗

1 and S∗
2 , we shift it to [1..m]. Then the above can be computed by multiplying S1

and S∗
1 by the MIN-version and taking the lower triangle, multiplying S2 and S∗

2 by
the MAX-version and taking the lower triangle, and finally subtracting the former from
the latter and taking the maximum from the resulting triangle. We call the operation of
transforming a matrix into a triangle triangulation.

For simplicity, we apply the algorithm on a square array of size (n, n), where n is a
power of 2. Then all parameters m and n appearing through recursion in Algorithm M
are power of 2, where m = n or m = n/2. We observe the algorithm splits the array
vertically and then horizontally. We define the work of computing the three Acolumn’s
through this recursion of depth 2 to be the work at level 0. The algorithm will split the
array horizontally and then vertically through the next recursion of depth 2. We call this
level 1, etc.

Now let us analyze the time for the work at level 0. We can multiply (n, n/2) and
(n/2, n) matrices by 4 multiplications of size (n/2, n/2), and there are two such mul-
tiplications in (3). Let M(n) be the time for multiplying two (n/2, n/2) matrices. At
level 0, we obtain an Acolumn and two smaller Acolumn’s, spending 12M(n) compar-
isons. Thus we have the following recurrence for the total time T (n). The following
lemma is obvious.

T (1) = 0, T (n) = 4T (n/2) + 12M(n)

Lemma 3. Let c be an arbitrary constant such that c > 0. Suppose M(n) satisfies the
condition M(n) ≥ (4 + c)M(n/2). Then the above T (n) satisfies T (n) ≤ 12(1 +
4/c)M(n).

Clearly the complexity of O(n3) for M(n) satisfies the condition of the lemma
with some constant c > 0. Thus the maximum subarray problem can be solved in O(n3)
time. Since we take the maximum of several matrices component-wise in our algorithm,
we need an extra term of O(n2) in the recurrence to count the number of operations.
This term can be absorbed by slightly increasing 12, the coefficient of M(n).

630 Sung E. Bae and Tadao Takaoka

Suppose n is not given by a power of 2. By embedding the array a in an array of
size (n′,n′) such that n′ is the next power of 2 and the gap is filled with 0, we can solve
the original problem in the complexity of the same order. Similar considerations can be
made on K in the following.

Now we describe the K-maximum subarray problem. When the recursion hits a
(K, K) array, we select K largest sums from possible K4 subarrays. This can easily be
done by changing the top-left and bottom-right co-ordinates on the prefix sum array. Let
us call this algorithm Algorithm A. Suppose K is a power of 2. If not, we can choose
the next power of 2 for K . First we change line 1 in Algorithm M as follow:

1. If the array becomes K × K , return the solution by Algorithm A.

Next we describe how to compute Acolumn at each recursion. We first define a − b
for two K-tuples, a and b, to be the K values that are made by subtracting elements
of b from those of a component-wise. To compute distance matrix multiplication by
S2S

∗
2 −S1S

∗
1 in (4), we use the K-matrix multiplication of MAX and MIN version. To

compute the subtraction, we follow the above operation of a−b component-wise. As we
assume K ≤ n, this complexity O(Kn2) of triangulation and subtraction is absorbed
in the main complexity. The initial condition for T becomes T (K) = O(K4). As there
are n/K×n/K subarrays at the bottom of recursion, the total time spent by Algorithm
A is O((n/K)2K4) = O(n2K2). If we use the O(n3) time algorithm for K-matrix
multiplication in Algorithm M, the total time before hitting the bottom of recursion is
O(n3). Thus the total time is O(n3 + n2K2). This time complexity is O(n3) when
K ≤ √

n. The K maximum sums can be sorted with additional O(K log K) time.

6 Concluding Remarks

In the previous section, we improved the complexity from O(n3 log K) to O(n3) for
small K . If we use a sub-cubic algorithm for DMM with time complexity

O(n3
√

log log n
log n) in [14], we can achieve a sub-cubic complexity for the the two-di-

mensional case for even smaller K ≤ O(
√

log n
log log n), using the same frame work of

divide-and-conquer and K-tuples. Recent developments for DMM [16, 19] can also be
incorporated. Details are omitted here.

If we find K-maximum subarray in a graphic image, those will heavily overlap.
That is, we will find many array portions that only slightly differ in co-ordinates. If
we are only interested in strictly disjoint portions, one way to solve this problem is
the following greedy method. When we find the maximum sum using Algorithm 2,
we replace the value of each cell comprising the maximum sum with −∞, and repeat
this algorithm. By repeating this process, we can find the second maximum sum, the
third, etc. For a one-dimensional array, as each run takes O(n) time, we can find the K-
maximum subarray in O(Kn) time. This is however solved in O(n) time [13]. We can
extend the O(Kn) time algorithm to two dimensions with O(Kn3) time. It remains to
be seen if we can extend the O(n) time algorithm to two dimensions with O(n3) time.

The sum of those maximum subarrays by this greedy method may not be the maxi-
mum of the total sum of K disjoint subarrays. This problem of minimizing the total sum

Improved Algorithms for the K-Maximum Subarray Problem for Small K 631

of K disjoint subarrays has been solved in linear time for the one-dimensional case in
[8]. To the authors’ knowledge, the two-dimensional case has not been solved.

References

1. Bae, S.E., Takaoka, T.: Parallel approaches to the maximum subarray problem. Japan-Korea
Workshop on Al. and Comp. (2003) 94–104

2. Bae, S.E., Takaoka, T.: Algorithms for the problem of K maximum sums and a VLSI algo-
rithm for the K maximum subarrays problem. ISPAN 2004 (2004) 247–253

3. Bengtsson, F., Chen, J.: Efficient algorithms for the k maximum sums. ISAAC 2004 LNCS,
Vol. 3341 Springer (2004) 137–148

4. Bentley, J.: Programming pearls: algorithm design techniques. Commun. ACM, Vol. 27(9)
(1984) 865–873

5. Bentley, J.: Programming pearls: perspective on performance. Commun. ACM, Vol. 27(11)
(1984) 1087–1092

6. Brodal, G.S.: Finger search trees with constant insertion time. SODA 1998 (1998) 540–549
7. Brown, M.R., Tarjan, R.E.: The design and analysis of a data structure for representing sorted

lists. SIAM Jour. on Comp., Vol. 9(3) (1980) 594–614
8. Csürös, M.: Algorithms for finding maxima-scoring segment sets. WABI 2004 LNCS,

Vol. 3240 Springer (2004) 62–73
9. Dietz, P.F., Raman, R.: A constant update time finger search tree. Inf. Process. Lett.,

Vol. 52(3) (1994) 147–154
10. Miller, R., Boxer, L.: Algorithms Sequential & Parallel- A Unified Approach. Prentice Hall,

(2000)
11. Perumalla, K., Deo, N.: Parallel algorithms for maximum subsequence and maximum sub-

array. Parallel Process. Lett., Vol. 5(3) (1995) 367–373
12. Qui, K., Akl, S.G.: Parallel maximum sum algorithms on intercommenction networks.

Queen’s Uni. Dept. of Com. and Info. Sci. Technical Report 99-431 (1999)
13. Ruzzo, W.L., Tompa, M.: A linear time algorithm for finding all maximal scoring subse-

quences. Intelligent Sys. in Molecular Biology (1999) 234–241
14. Takaoka, T.: A new upper bound on the complexity of the all pairs shortest paths problem.

Inf. Process. Lett., Vol. 43(4) (1992) 195–199
15. Takaoka, T.: Efficient algorithms for the maximum subarray problem by distance matrix

multiplication. Elec. Notes in Theoretical Computer Sci., Vol. 61 Elsevier (2002)
16. Takaoka, T.: A faster algorithm for the all-pairs shortest path problem and its application.

COCOON 2004, LNCS, Vol. 4106 Springer (2004) 278–289
17. Tamaki, H., Tokuyama, T: Algorithms for the maximum subarray problem based on matrix

multiplication. SODA 1998 (1998) 446–452
18. Wen, Z.: Fast parallel algorithms for the maximum sum problem. Parallel Computing,

Vol. 21(3) (1995) 461–466
19. Zwick, U.: A slightly improved sub-cubic algorithm for the all pairs shortest paths problem

with real edge lengths. ISAAC 2004, LNCS, Vol. 3341 Springer (2004) 921–932

	Improved Algorithms for the K-Maximum Subarray Problem for Small K
	1 Introduction
	2 Review of the Maximum Subarray Problem
	3 Finding the K Maximum Sums in O(Kn) Time
	4 Improved Algorithm for K Maximum Sums for Small K
	4.1 Pre-process
	4.2 Candidate Generation and Selection
	4.3 Total Time

	5 Speed-Up for Two Dimensions
	5.1 Generalization of Distance Matrix Multiplication
	5.2 Application to the K-Maximum Subarray Problem

	6 Concluding Remarks
	References

