Cantor’s Diagonalization Method

Let N be the set of natural numbers, i.e., $N = \{1, 2, 3, \ldots\}$. Let R be the set of real numbers between 0 and 1. If a set S has a one-to-one correspondence with N, we say S is countable. In other words, S is denumerable, like $S = \{x_1, x_2, \ldots\}$. We also say we can enumerate S.

Theorem (Cantor). R is not denumerable.

Proof. Let us assume R is denumerable, that is, $R = \{x_1, x_2, \ldots\}$. Let the binary expansion of x_i be given by $x_i = 0.b_{i1}b_{i2}b_{i3} \ldots$. The situation is illustrated in the following.

\[
\begin{align*}
x_1 & \quad 0.b_{11}b_{12}b_{13} \ldots \\
x_2 & \quad 0.b_{21}b_{22}b_{23} \ldots \\
\vdots & \\
x_i & \quad 0.b_{i1}b_{i2}b_{i3} \ldots \\
x_{i+1} & \quad 0.b_{i+1,1}b_{i+1,2}b_{i+1,3} \ldots \\
\vdots &
\end{align*}
\]

Now let x in R be defined by $x = 0.b_{11}'b_{22}' \ldots b_{ii}' \ldots$, where b' is the complement of b. We see that we cannot place x anywhere in the above table. Suppose $x = x_i$. Then x would disagree with x_i at the i-th bit. In the above table x will disagree at the diagonal points with any x_i given by boldface.

Note. R is denser than N. The density of N is \aleph_0 (aleph zero), and that of R is \aleph_1 (aleph one).