Let a >= b > 0 be two integers. Let r(0)=a, r(1)=b, c(0)=0, c(1)=1, d(0)=1, d(1)=0 and r(i) = r(i-2) -q(i-1)r(i-1) for i=2, ..., n. r(n+1)=0 c(i) = c(i-2) -q(i-1)c(i-1) d(i) = d(i-2) -q(i-1)d(i-1) Lemma 1. a*d(i) + b*c(i) = r(i) for i>= 0. Lemma 2. For i>1 (1) c(i-1)c(i)<0, that is, the sign alternates. (2) |c(i-1)| <= |c(i)|, the absolute value is non-decreasing. Similar for d(i). Proof. Induction. Note q(i)>=1 for all i. Basis. i=2 (1) c(1)=1, c(2)=-a/b (2) |c(1)|=1, |c(2)| = a/b >=1 = |c(1)| Induction step. (1) c(i+1)=c(i-1)-q(i)c(i) case 1. c(i-1)<0, c(i)>0 ==> c(i+1)<0 case 2. c(i-1)>0, c(i)<0 ==> c(i+1)>0 (2) |c(i+1)| = |c(i-1)-q(i)c(i)| = |c(i-1)| + |q(i)c(i)| >= |c(i)| Lemma 3. |c(n+1)|=a, |d(n+1)|=b, if gcd(a,b)=1. Proof. From lemma 1, a*d(n+1) + b*c(n+1) = r(n+1) = 0. That is, a*d(n+1) = -b*c(n+1). Thus c(n+1)=-a, d(n+1)=b, or c(n+1)=a, d(n+1)=-b, since there is no common factor in a and b. Note. If gcd(a,b)>1, let a'=a/gcd(a,b) and b'=b/gcd(a,b). Then lemma 3 holds for a' and b', and a'<=a and b'<=b. Theorem. |c(i)| <= a, |d(i)| <= b Proof. |c(i)| and |d(i)| are monotone non-decreasing (lemma 2) and bounded by a and b (lemma 3).