COSC413 Tutorials on Number Theoretic Algorithms

(1) Prove that $\equiv \pmod{m}$ is an equivalence relation.

(2) Prove that if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$,

 (a) $a \pm c \equiv b \pm d \pmod{m}$
 (b) $a*c \equiv b*d \pmod{m}$

(3) Make the addition and multiplication table for \mathbb{Z}_7.

(4) Make the multiplication table for \mathbb{Z}_{15}^\ast.

(5) List up all primitive roots of 7, 10 and 13.

(6) Let H be a subgroup of G. Prove that congruence modulo H is an equivalence relation.

(7) Prove that $|H| = |Ha|$.

(8) Check Fermat’s theorem for a such that $\gcd(a, m) = 1$ for $m=9$ and several a’s.

(9) For primes p and q, prove $\varphi(pq) = (p-1)(q-1)$.

(10) Solve the recurrence equation (difference equation)

 $y(0) = 0, y(1) = 4,$

 $y(n+2) = 4y(n+1) - y(n)$ \hspace{1cm} (n \geq 0)

 Check the result for $y(3)$ by the recurrence and expanding the solution.

(11) Trace the Euclidean algorithm to compute $7^{\varphi(-1)} \pmod{13}$.

(12) Prove that if $a \equiv b \pmod{m}$ and $\gcd(m,n) = 1$, $a \equiv b \pmod{mn}$. You can assume all are positive integers.

(13) Prove that if $a \equiv b \pmod{m}$,

 a is a quadratic residue $\pmod{m} \iff b$ is a quadratic residue \pmod{m}.

(14) Prove that if c is a solution for $x^2 \equiv a \pmod{m}$, d such that $d \equiv c \pmod{m}$ is also a solution.

(15) Check Solovay and Strassen’s algorithm for $n = 9$ with all a such that $\gcd(a, n) = 1$ and $0 < a < n$.

(16) Draw the data flow graph for FFT with $n = 16$.

(17) Do some computational experiments on the Chinese Remaindering Theorem with $m_1=7$, $m_2=11$ and $m_3=13$.