
A Sub-cubic Time Algorithm for the

k-Maximum Subarray Problem

Sung Eun Bae and Tadao Takaoka

Department of Computer Science, University of Canterbury
Christchurch, New Zealand

E-mail {seb43, tad}@cosc.canterbury.ac.nz

Abstract. We design a faster algorithm for the k-maximum sub-array
problem under the conventional RAM model, based on distance matrix
multiplication (DMM). Specifically we achieve O(n3

√

log log n/ log n +
k log n) for a general problem where overlapping is allowed for solution
arrays. This complexity is sub-cubic when k = o(n3/ log n). The best
known complexities of this problem are O(n3 + k log n), which is cubic

when k = O(n3/ log n), and O(kn3
√

log log n/ log n), which is sub-cubic

when k = o(
√

log n/ log log n).

1 Introduction

The maximum subarray (MSA) problem is to compute a rectangular portion in
a given two-dimensional (n, n)-array that maximizes the sum of array elements
in it. If the array elements are all non-negative we have the trivial solution of
the whole array. Thus we normally subtract the mean or median value from each
array element. This problem has wide applications in graphics and data mining
for marketing, as described in [4].

This problem was first introduced by Grenander and brought to computer
science by Bentley [7] with an algorithm of O(n3). Tamaki and Tokuyama [22]
obtained a sub-cubic algorithm based on distance matrix multiplication (DMM),
by reducing the problem to DMM and showing that the time complexities of the
two problems are of the same order. Takaoka [19] simplified the algorithm for
implementation.

The k-maximum subarray (k-MSA) problem is to obtain the maximum sub-
array, the second maximum subarray, ..., the k-th maximum subarray in sorted
order for k up to O(n4). We can define two such problems. One is the general case
where we allow overlapping portions, and the other is for disjoint portions. We
consider the general problem in this paper. Let M(n) be the time complexity for
DMM for an (n, n)-matrix. We solve the problem in O(M(n) + k log n) time for
the general problem with an (n, n)-array, where M(n) = O(n3

√

log log n/ log n).
Preceding results for the one-dimensional problem are O(kn) by Bae and

Takaoka [1], O(min(n
√

k, n log2 n)) by Bengtsson and Chen [5], O(n log k) by
Bae and Takaoka [2], O(n+k log n) by Bae [4], Cheng, et. al. [11], Bengtsson, et.
al. [6], O(n log n + k) expected time by Lin, et. al. [17], and O(n + k) by Brodal,

et. al. [8]. Obviously we can solve the two-dimensional problem by applying the
one-dimensional algorithm to all O(n2) strips of the array, resulting in the time
complexity multiplied by O(n2). For the algorithms specially designed for the
two-dimensional case, we have O(kn3(log log n/ logn)1/2) by [2] and O(n3 + k)
by [8]. The last is for k maximum subarrays in unsorted order.

These results are mainly based on extension of optimal algorithms for the
one-dimensional problem to the two-dimensional problem. Our results in this
paper and [2] show an extension of an optimal algorithm in one dimension to two
dimensions does not produce optimal solutions for the two-dimensional problem.

The best known results for the disjoint case are the straightforward O(kM(n)),
which is sub-cubic for small k such as k = o(

√

log n/ log log n), where M(n) is
the time for DMM, and O(n3 + kn2 log n) by Bae and Takaoka [3] for larger k.
The problem here is to find the maximum, the second maximum, etc. from the
remaining portion.

In the application of graphics, our problem is to find the brightest spot, sec-
ond brightest spot, ..., k-th brightest spot. In the application of data mining,
suppose we have a sales database with records of sales amount of some com-
modity with numerical attributes such as age, annual income, etc. Then the
rectangular portion of age and annual income in some range that maximizes
the amount corresponds to obtaining the association rule that maximizes the
confidence that if a person is in the range, then he is most likely to buy the com-
modity. Similarly we can identify the second most promising customer range,
etc.

The computational model in this paper is the conventional RAM, where
only arithmetic operations, branching operations, and random accessibility with
O(log n) bits are allowed.

The engine for our problem is an efficient algorithm for DMM. Since a sub-
cubic algorithm for DMM was achieved by Fredman [14], there have been several
improvements [18], [15], [16], [20], [23], [21], [9], [10]. We modify the algorithm
in [18] for DMM whose complexity is O(n3

√

log log n/ logn), and extend it to
our problem. The recent improvements for DMM after [18] are slightly better,
and it may be possible they can be tuned for speed-up of the k-MSA problem.

The main technique in this paper is tournament. Specifically we reorganize
the structure of the maximum subarray algorithm based on divide-and-conquer
into a tournament structure, which serves as an upper structure. We also reor-
ganize the DMM algorithm into a tournament, which works as a lower structure.
Through the combined tournament, the maximum, second maximum, etc. are
delivered in O(log n) time per subarray.

In section 2, basic definitions of tournaments and DMM are given. In section
3, the X + Y problem is defined and a well-known algorithm for it is described
for the later development.

In section 4, we give the definition of the maximum subarray problem and a
divide-and-conquer algorithm for it. In section 5, we reorganize the algorithm in
section 4 into a tournament style, and explain how to combine it with DMM to

solve the k-MSA problem. The X + Y algorithm is used as glue in this combi-
nation.

The DMM algorithm used is based on two-level divide-and-conquer. In sec-
tion 6, the upper division is described. In section 7, the lower division is handled
through a table look-up. The table in [18] is enhanced to handle several integers
in an encoded form, rather than a single integer, at each table entry.

Section 8 concludes the paper, discussing possibilities for further speed-up
and extension of similar ideas to the disjoint problem.

This paper achieves a new time complexity through a combination of known
methods and tools. Note that we use the same name k in two different meanings;
indexing in arrays, and the k for the k-MSA problem.

2 Basic definitions

An r-ary tournament T is an r-ary tree such that each internal node has r
internal nodes and some external nodes as children, or some external nodes only
as children. It also has a key, which originates from itself if it is an external
node, or is extracted from one of its children if it is an internal node. Each
external node has a numerical datum as a key. External nodes can be regarded
as participants of the tournament. A parent has the minimum of those keys of
its children. We call this a minimum tournament. A maximum tournament is
similarly defined. In other words a parent is the winner among its children. The
external nodes form the leaves of the tree. We form a complete r-ary tree as far as
internal nodes are concerned. Also a node maintains some identity information
of the winner that reached this node, such as the original position of the winner,
etc. The key and this kind of information eventually propagates to the root, and
the winner is selected. The size of the tournament, defined by the number of
nodes, is O(n), if there are n external nodes.

If we use a binary tournament for sorting, the identity can be the position
of the data item in the original array. We can build up a minimum tournament
for n data items in O(n) time. After that, successive k minima can be chosen in
O(k log n) time. This can be done by replacing the key of the winning item at the
bottom level, that is, in a leaf, by ∞ and performing matches along the winning
path spending O(log n) time for the second winner, etc. Thus k minima can be
chosen in O(n + k log n) time in sorted order. If k = n, this is a sorting process
in O(n log n) time, called the tournament sort. We use a similar technique of
tournament in the k-MSA problem.

The distance matrix multiplication is to compute the following distance prod-
uct C = AB in (1) for two (n, n)-matrices A = [aij] and B = [bij] whose elements
are real numbers. We can define (1) with “max” also.

cij = minn
k=1{aik + bkj}, (i, j = 1, ..., n) (1)

The operation in the right-hand side of (1) is called distance matrix multi-
plication of the min version, and A and B are called distance matrices in this

context. The index k that gives the minimum in (1) is called the witness for cij .
If we use max instead we call it the max version.

Suppose we have a three layered acyclic graph for which A is a connection
matrix from layer 1 to layer 2, and B is that from layer 2 to layer 3. Each layer
has vertices 1, ..., n, and the distance from i in layer 1 to j in layer 2 is aij , and
that from layer 2 to layer 3 is bij . Then cij is the shortest distance from i in
layer 1 to j in layer 3.

To solve the k-MSA problem, we want to find up to k shortest distances
from layer 1 to layer 3 between any vertices. We use this version of extended
DMM in this paper, whereas k-DMM in [2] computes k shortest paths for each
pair (i, j) with i in layer 1 and j in layer 3, which is rather time consuming.
If we solve DMM in M(n) time in such a way that a tournament of some size
becomes available for the extended DMM within the same time complexity, then
k shortest distances can be found in O(M(n) + k log n) time for k up to O(n3),
as shown in Sections 6 and 7.

We actually need at most k shortest distances in total for all DMMs used
in our k-MSA algorithm, and our requirement is that the newly designed DMM
algorithm return the next shortest distance for any pair (i, j), that is, i in layer
1 to j in layer 3, in O(log n) time.

3 X + Y problem

Let X and Y be lists of n numbers. We want to choose k smallest numbers from
the set Z = {x + y|(x ∈ X) ∧ (y ∈ Y)}. We organize a tournament for each
of X and Y in O(n) time. Let the imaginary sorted lists be X = (x1, ..., xn)
and Y = (y1, ..., yn). Actually they are extracted from the tournaments as the
computation proceeds. We successively take elements from those sorted lists, one
in O(log n) time. Obviously x1 + y1 is the smallest. The next smallest is x1 + y2

or x2 + y1. Let us have an imaginary two-dimensional array whose (i, j)-element
is xi + yj . As the already selected elements occupy some portion of the top
left corner, which we call the solved part, we can prepare a heap to represent
the border elements adjacent to the solved region. By keeping selecting minima
from the heap, and inserting new bordering elements, we can solve the problem
in O(n + k log n) time.

See the figure below for illustration.

y1 y2 y5 y6

x1 | x1+y1 x1+y2 __|//| Hatched part is in priority queue

x2 | x2+y1 __|//| If x2+y5 is chosen with delete-min,

x3 | |//| it is moved from the hatched to the

|__________________|//| solved part, and x3+y5 and x2+x6

|//////////////////| are inserted to the heap.

If we change the tournaments from minimum to maximum, we can find k
maxima in the same amount of time. Also with similar arrangements, we can

select k largest or smallest from X − Y = {x − y|(x ∈ X) ∧ (y ∈ Y)} in the
same amount of time. We use this simple algorithm rather than sophisticated
ones such as [13], since these two are equivalent in computing time for k minima
in sorted order.

4 The maximum subarray problem

Now we proceed to the maximum subarray problem for an array of size (m, n).
The cubic algorithm for this problem given by Bentley [7] was improved to
sub-cubic by Tamaki and Tokuyama [22]. We review the simplified sub-cubic
version in [19]. We give a two-dimensional array a[1..m, 1..n] of real numbers as
input data. The maximum subarray problem is to maximize the sum of the array
portion a[k..i, l..j], that is, to obtain the sum and such indices (k, l) and (i, j). We
suppose the upper-left corner has co-ordinates (1,1). Bentley’s algorithm finds
the maximum subarray in O(m2n) time, which is cubic O(n3) when m = n.

For simplicity, we assume the given array a is a square (n, n)-array. We com-
pute the prefix sums s[i, j] for array portions of a[1..i, 1..j] for all i and j with
boundary condition s[i, 0] = s[0, j] = 0. Obviously this can be done in O(n2)
time for an (n, n)-array. The outer framework of the algorithm is given below.
Note that the prefix sums once computed are used throughout recursion.

Algorithm M: Maximum subarray

1. If the array becomes one element, return its value.
2. Let Atl be the solution for the top left quarter.
3. Let Atr be the solution for the top right quarter.
4. Let Abl be the solution for the bottom left quarter.
5. Let Abr be the solution for the bottom right quarter.
6. Let Acolumn be the solution for the column-centered problem.
7. Let Aleft−row be the solution for the row-centered problem for the left half.
8. Let Aright−row be the solution for the row-centered problem for the right half.
9. Let the solution A be the maximum of those seven.

The coverage of a solution array is the smallest square region, defined by
the above recursive calls, in which the solution is obtained. It is given by index
pairs. The scope of a solution array is the index pairs ((k, l), (i, j)) if the solu-
tion is a[k..i, l..j]. A coverage is also defined by the co-ordinates of the top-left
corner, and those of the bottom-right corner. If we call the above algorithm
for a[1..n, 1..n], for example, the coverage of A is ((1, 1), (n, n)), that of Atr is
((1, n/2 + 1), (n/2, n)), etc.

Here the column-centered problem is to obtain an array portion that crosses
over the central vertical line with maximum sum, and can be solved in the
following way. Aleft−row and Aright−row can be computed similarly.

Acolumn = max
i−1,n/2−1,n,n
k=0,l=0,i=1,j=n/2+1{s[i, j]− s[i, l] − s[k, j] + s[k, l]}.

In the above we first fix i and k, and maximize the above by changing l and j.
Then the above problem is equivalent to maximizing the following for i = 1, ..., n
and k = 0, ..., i − 1.

Acolumn[i, k] = max
n/2−1,n
l=0,j=n/2+1{−s[i, l] + s[k, l] + s[i, j] − s[k, j]}

Let s∗[i, j] = −s[j, i]. Then the above problem can further be converted into

Acolumn[i, k] = −min
n/2−1
l=0 {s[i, l] + s∗[l, k]} + maxn

j=n/2+1{s[i, j] + s∗[j, k]}
The first part in the above is distance matrix multiplication of the min

version and the second part is of the max version. Let S1 and S2 be matrices
whose (i, j) elements are s[i, j − 1] and s[i, j + n/2]. For an arbitrary matrix T ,
let T ∗ be that obtained by negating and transposing T . As the range of k is [0
.. n − 1] in S∗

1 and S∗

2 , we shift it to [1..n]. Then the above can be computed
by multiplying S1 and S∗

1 by the min version, multiplying S2 and S∗

2 by the
max version, subtracting the former from the latter, that is, S = S2S

∗

2 − S1S
∗

1 ,
and finally taking the maximum from the lower triangle. We will re-organize
this maximizing operation into a tournament later. We call the operations of
extracting a triangle triangulation. This is effectively done by putting −∞ in
the upper triangle of S including the diagonal. We call this converted matrix S′.

For simplicity, we assume n is a power of 2. Then all size parameters appear-
ing through recursion in Algorithm M are power of 2. We define the work of
computing the three subarrays, Acolumn, Aleft−row. and Aright−row, to be the
work at level 0. The algorithm will split the array horizontally and vertically
into four through the recursion to go to level 1.

Now let us analyze the time for the work at level 0. We can multiply (n, n/2)
and (n/2, n) matrices by 4 multiplications of size (n/2, n/2), and there are two
such multiplications in S = S2S

∗

2 −S1S
∗

1 . We measure the time by the number of
comparisons, as the rest is proportional to this. Let M(n) be the time for mul-
tiplying two (n/2, n/2) matrices. At level 0, we obtain an Acolumn, Aleft−row,
and Aright−row, spending 12M(n) comparisons. Thus we have the following re-
currence for the total time T (n). The following lemma [19] is obvious.

T (1) = 0, T (n) = 4T (n/2) + 12M(n).

Lemma 1. Let c be an arbitrary constant such that c > 0. Suppose M(n)
satisfies the condition M(n) ≥ (4 + c)M(n/2). Then the above T (n) satisfies

T (n) ≤ 12(1 + 4/c)M(n).

Clearly the complexity of O(n3(log log n/ logn)1/2) for M(n) satisfies the
condition of the lemma with some constant c > 0. Thus the maximum subar-
ray problem can be solved in O(n3(log log n/ log n)1/2) time. Since we take the
maximum of several matrices component-wise in line 9 of our algorithm and
maximum from S′, we need an extra term of O(n2) in the recurrence to count
the number of operations. This term can be absorbed by slightly increasing the
constant 12 in front of M(n) in the above recurrence.

5 The k-maximum subarray problem

When we solve the maximum subarray problem with Algorithm M, within the
same asymptotic time complexity, we organize a four-ary tournament along the
four-way recursion as internal nodes, and the three sub-problems; column cen-
tered, left-row centered, and right-row centered as external nodes, in Algorithm
M. Those sub-problems are organized into tournaments in the next section. For
now we regard them as leaves and assume they can respond to our request in
our desired time. When we make the four-ary tournament along the execution of
Algorithm M, we copy necessary portions of array a for the seven sub-problems
from line 2 to 8. The total overhead time and space requirement for this part
are O(n2 log n).

Suppose the maximum subarray was returned at level 0, whose coverage and
scope are ((K, L), (I, J)) and ((k, l), (i, j)). If this array is a single element, that
is, returned at the bottom of recursion, i.e., line 1 of the algorithm, we put −∞
at the leaf, and reorganize the tournament for the second maximum subarray
towards the root along the winning path. The necessary time is O(log n).

If the maximum subarray is not from the bottom of recursion, it must be from
one of Acolumn, Aleft−row, and Aright−row of some coverage at some level. Those
three problems are organized into a tournament each, so that they can return
the second maximum in O(log n) time. The coverage and scope information
can identify which of the three produced the winner. We can reorganize the
tournament along the winning path from this second maximum towards the root.
Thus the k-maximum subarray problem can be solved in O(M(n)+k log n) time,
where M(n) = O(n3

√

log log n/ logn).

Let us assume K = 1, I = n, L = 1, and J = n without loss of generality.
Also assume A was obtained from Acolumn, which is in turn obtained from S′,
that is, the lower triangle of S = S2S

∗

2 − S1S
∗

1 . We rewrite this equation as
S = Q − P , where P = S1S

∗

1 and Q = S2S
∗

2 . We assume that S[i, k] for some
k < i gives Acolumn with the witnesses l and j for P and Q respectively. We need
to find the next value for S′. To do so, we need to find the next minimum value
for P [i, k] and next maximum for Q[i, k] with witnesses different from l and j.
As is shown in the following sections, the next value for P [i, k] and Q[i, k] are
returned in O(log n) time. Then using the X+Y algorithm, we can choose the
next value for S[i, k] in O(log n) time, which is delivered to the tournament for
S′ where other elements are intact. Thus the next value for the chosen one of
the above three problems, Acolumn, Aleft−row and Aright−row, can be found in
O(log n) time.

We observe at this stage that any DMM algorithm, that can deliver successive
minimum distances from layer 1 to layer 3 in the context of Section 2 in O(log n)
time, can be fitted into the framework of our algorithm.

6 Distance matrix multiplication by divide and conquer

We review the DMM algorithm of min-version in [18]. The max-version is sim-
ilar. Matrices A, B, and C in DMM are divided into (m, m)-submatrices for
N = n/m as follows:

A1,1 ... A1,N

...
AN,1 ... AN,N

B1,1 ... B1,N

...
BN,1 ... BN,N

 =

C1,1 ... C1,N

...
CN,1 ... CN,N

Matrix C can be computed by

C = (Cij), where Cij = minN
k=1{AikBkj}(i, j = 1, ...N). (2)

Here the product of submatrices is defined similarly to (1) and the “min” op-
eration is defined on submatrices. Since comparisons and additions of distances
are performed in a pair, we measure the time complexity by the number of key
comparisons, and omit counting the number of additions for measurement of
the time complexity. We have N3 multiplications of distance matrices in (2).
Let us assume that each multiplication of (m, m)-submatrices can be done in
T (m) computing time, assuming precomputed tables are available. The time
for constructing the tables is reasonable when m is small. The time for min
operations in (2) is O(n3/m) in total. Thus the total time excluding table con-
struction is given by O(n3/m + (n/m)3T (m)). As shown below, it holds that
T (m) = O(m2√m). Thus the time becomes O(n3/

√
m).

Now we further divide the small (m, m)-submatrices into rectangular matri-
ces in the following way. We rename the matrices Aik and Bkj in (2) by A and B.
Let M = m/l, where 1 ≤ l ≤ m. Matrix A is divided into M (m, l)-submatrices
A1, ..., AM from left to right, and B is divided into M (l, m)-submatrices B1,
..., BM from top to bottom. Note that Ak are vertically rectangular and Bk are
horizontally rectangular. Then the product C = AB can be given by

C = minM
k=1Ck, where Ck = AkBk (3)

As shown in the next section, AkBk can be computed in O(l2m) time. Thus the
above C in (3) can be computed in O(m3/l + lm2) time. Setting l =

√
m yields

O(m2√m) time.
We define a u/l-tournament. Let us find k minima from (n, n)-matrices

X1, ..., Xm for general m and n. The right-hand side of X = minm
ℓ=1Xℓ is to

take minimum values of matrices component-wise. For each (i, j) we organize
(i, j) elements of those m matrices into a lower tournament through index ℓ.
Then we organize the n2 roots of those tournaments, which give X , into an up-
per tournament, We can draw k minima of those matrices from the root of the
upper tournament. We call this tournament structure a u/l- tournament.

Now for the extended DMM algorithm, the “min” operation in (2) for each
(i, j) is reorganized into a u/l-tournament within the same asymptotic complex-
ity as that of DMM, by the substitution Xk = AikBkj . As C in (2) is regarded as

an (N, N)-matrix of (m, m)-matrices, we organize a tournament of N2 roots of
these u/l-tournaments. We note that the matrix C in (3) can be updated by the
next minimum in some AkBk in O(M) = O(m/l) time by sequential scanning,
that is, without a tournament structure

From this construction, we can find the next minimum for the extended DMM
in O(log n) time, since the next minimum in AkBk in (3) can be found in O(1)
time, as is shown next.

7 How to multiply rectangular matrices

We rename again the matrices Ak and Bk in (3) by A and B. In this section we
show how to compute AB, that is,

minl
r=1{air + brj}, for i = 1, ..., m; j = 1, ..., m. (4)

Note that we do not form tournaments for this “min” operation.
We assume that the lists of length m, (a1r − a1s, ..., amr − ams), and (bs1 −

br1, ..., bsm − brm) are already sorted for all r and s (1 ≤ r < s ≤ l). The
time for sorting will be mentioned later. Let Ers and Frs be the corresponding
sorted lists. For each r and s, we merge lists Ers and Frs to form list Grs. In
case of a tie, we put an element from Ers first into the merged list. Let Hrs

be the list of ranks of air − ais (i = 1, ..., m) in Grs and Lrs be the list of
ranks of bsj − brj (j = 1, ..., m) in Grs. Let Hrs[i] and Lrs[j] be the ith and jth
components of Hrs and Lrs respectively. Then we have Grs[Hrs[i]] = air − ais

and Grs[Lrs[j]] = bsj − brj.
The lists Hrs and Lrs for all r and s can be made in O(l2m) time, when the

sorted lists are available. We have the following obvious equivalence for r < s.

air + brj ≤ ais + bsj ⇐⇒ air − ais ≤ bsj − brj ⇐⇒ Hrs[i] ≤ Lrs[j]

Fredman [14] observed that the information of ordering for all i, j, r, and
s in the rightmost side of the above formula is sufficient to determine the
product AB by a precomputed table. This information is essentially packed
in the three dimensional space of Hrs[i](i = 1..m; r = 1..l; s = r + 1..l), and
Lrs[j](j = 1..m; r = 1..l; s = r + 1..l). This can be regarded as the three-
dimensional packing.

In [18] it is observed that to compute each (i, j) element of AB, it is enough to
know the above ordering for all r and s. This can be obtained from a precomputed
table, which must be obtained within the total time requirement. This table is
regarded as a two-dimensional packing, which allows a larger size of m. leading to
a speed-up. In [20] and [21], a method by one-dimensional packing is described.

For simplicity, we omit i from Hrs[i] and Lrs[i], and define concatenated
sequences H [i] and L[i] of length l(l − 1)/2 by

H [i] = H1,2 . . . H1,lH2,3 . . . H2,l . . .Hl,l−1

(5)

L[i] = L1,2 . . . L1,lL2,3 . . . L2,l, . . . Ll,l−1

For integer sequence (x1, . . . , xp), let h(x1, . . . , xp) = x1µ
p−1 + . . .+xp−1µ+

xp. Let h(H [i]) and h(L[i]) be encoded integer values for H [i] and L[i], where
p = l(l−1)/2 and µ = 2m. The computation of h for H [i] and L[i] for all i takes
O(l2m) time. By consulting a precomputed table table with the values of h(H [i])
and h(L[j]), we can determine the value of r that gives the minimum for (4) in
O(1) time. For all i and j, it takes O(m2) time. Thus the time for one AkBk in
(3) is O(ℓ2m), since l2 = m. M such multiplications take O(Mℓ2m) = O(ℓm2)
time.

To compute table[x][y] for any positive integers x and y, x and y are decoded
into sequences H and L, which are expressed by the right-hand sides of (5). If
Hs,r > Ls,r for s < r or Hr,s < Lr,s for r < s, we can say r beats s in the sense
that air + brj ≤ ais + bsj if H and L represent H [i] and L[j]. We first fix r and
check this condition for all such s. We repeat this for all r. If r is not beaten
by any s, it becomes the table entry, that is, table[x][y] = r. If there is no such
r, the table entry is undefined. There are O(((2m)l(l−1)/2)2) possible values for
all x and y, and one table entry takes O(l(l − 1)/2) time. Thus the table can be
constructed in O((l(l−1)/2)(2m)2l(l−1)/2) = O(cm log m) time for some constant
c. Let us set m = log n/(log c log log n). Then we can compute the table in O(n)
time.

If r is beaten by i participants, the rank of r becomes i+1. Let ri be at rank
i. Then we fill the (x, y) entry of table′, table′[x, y], by h(r1, ..., rl) with p = l.
That is, using this function h, we encode not only the winner, but second winner,
third winner, etc., into the table elements. This can also be done in O(n) time,
by a slight increase of constant c in the previous page.

To prepare for the extended DMM, we extend equation (4) in such a way
that cij is the l-tuple of the imaginary sorted sequence, (air1

+br1j , ..., airl
+brlj),

of the set {air + brj|1 ≤ r ≤ l}. Note that we do not actually sort the set. The
leftmost element of cij , that is, the minimum, participates in the tournament
for “min” in (3). If cij = (x1, x2, ..., xl) and x1 is chosen as the winner, cij is
changed to (x2, ..., xl,∞), etc. As k can be up to O(n3), many of cij will be all
infinity towards the end of computation.

This can be implemented by introducing an auxiliary matrix C′. When we
compute DMM, we compute C′, where c′ij = table′[h[H [i]), h(L[j])] =h(r1, ..., rl).
Each rk (k = 1, ..., l) is obtained in O(1) time. The elements of the sorted list of
cij is delivered by decoding C′[i, j] one-by-one when demanded from up-stream
of the algorithm.

Example 1. m = 5, 2m = 10, h(H) = 456, and h(L) = 329. Since H1,2 >
L1,2 and H2,3 < L2,3, the winner is 2, that is, table[456, 329] = 2. Also we see
table′[453, 329] = 213, since H [1, 3] > L[1, 3].

H =

− 4 5
− − 6
− − −

 , L =

− 3 2
− − 9
− − −

We note that the time for sorting to obtain the lists Ers and Frs for all k
in (3) is O(Ml2m log m). This task of sorting, which we call presort, is done

for all Aij and Bij in advance, taking O((n/m)2(m/l)l2m log m) = O(n2l log m)
time, which is absorbed in the main complexity. Thus we can compute k shortest
distances in O(M(n) + k log n) time.

8 Concluding remarks

We showed an asymptotic improvement on the time complexity of the k-maximum
subarray problem based on a fast algorithm for DMM. The time complexity is
sub-cubic in n, when k = o(n3/ log n). If we use recent faster algorithms for
DMM, it may be possible to have a better complexity bound for the k-MSA
problem.

Another challenge is to use the same idea of tournament technique for the
disjoint k-MSA problem. Once the maximum subarray is found, we need to
exclude the occupied portion from further considerations. This was done by “hole
creation” in [3], achieving a cubic time for k = O(n/ log n). A “hole” causes many
tournaments to be updated to offer the best subarrays to be chosen. It remains
to be seen whether a similar technique can be used in the disjoint case to achieve
a sub-cubic time for the same range of k.

The authors are very grateful to reviewers, whose constructive comments
greatly helped us improve the description of this revised version.

References

1. Bae, S. E., and Takaoka, T., Mesh algorithms for the K maximum subarray prob-
lem, Proc. ISPAN 2004, pp 247-253, 2004

2. Bae, S. E., and Takaoka, T., Improved Algorithms for the K-Maximum Subarray
Problem for Small K, COCOON 2005, LNCS 3595, pp 621–631. Also in Computer
Journal, vol. 49, no. 3, pp 358–374, 2006.

3. Bae, S. E., and Takaoka, T., Algorithms for K Disjoint Maximum Subarrays, ICCS
2006, LNCS 3991, pp 595–602. Also in IJFCS, vol 18, no. 2, pp 310–339, 2007.

4. Bae, S. E., Sequential and Parallel Algorithms for the Generalized Maximum Sub-
array Problem, Ph. D Thesis submitted to University of Canterbury, April 2007.

5. Bengtsson, F. and J. Chen, Efficient Algorithms for the k Maximum Sums, ISAAC
2004, LNCS 3341, Springer, 137–148, 2004

6. Bengtsson, F. and J. Chen, A Note on Ranking k Maximum Sums, Technical
Report Lulea University LTE-FR-0508, 2005.

7. Bentley, J, Programming Pearls - Perspective on Performance, Comm. ACM, 27
(1984) 1087-1092

8. Brodal, G. S. and Jorgensen, A. G., A Linear Time Algorithm for the k Maximal
Sums Problem, private communication. Also MFCS 2007, to appear.

9. Chan, T. M., All pairs shortest paths with real weights in O(n3/ log n) time, Proc.
9th Workshop on Algorithms and Data Structures (WADS), LNCS 3608, pp 318-
324, 2005

10. Chan, T. M., More algorithms for all-pairs shortest paths in weighted graphs, 39th
ACM Symposium on Theory of Computing (STOC), Pages: 590 - 598, 2007

11. Cheng, C., Cheng, K., Tien, W., and Chao, K., Improved algorithms for the k
maximum sums problem. Proc. ISAAC 2005, LNCS 3827 (2005) 799-808.

12. Dobosiewicz, A more efficient algorithm for min-plus multiplication, Internt. J.
Comput. Math. 32 (1990) 49-60

13. Frederickson, G. N. and D. B. Johnson, The complexity of selection and ranking
in X+Y and matrices with sorted rows and columns, JCSS vol. 24 (1982) 197-208

14. Fredman, M, New bounds on the complexity of the shortest path problem, SIAM
Jour. Computing, vol. 5, pp 83-89, 1976

15. Han, Y, Improved algorithms for all pairs shortest paths, Info. Proc. Lett., 91
(2004) 245-250

16. Han, Y., An O(n3(log log n/ log n)5/4) time algorithm for all pairs shortest paths,
Proc. 14th European Symposium on Algorithms (ESA), LNCS 4168, pp 411-417,
2006

17. Lin, T. C. and Lee, D. T., Randomized algorithm for the sum selection problem,
ISAAC 2005, LNCS 3827 (2005) pp 515-523.

18. Takaoka, T., A New Upper Bound on the complexity of the all pairs shortest path
problem, Info. Proc. Lett., 43 (1992) 195-199

19. Takaoka, T, Sub-cubic algorithms for the maximum subarray problem, Proc. Com-
puting:Australasian Theory Symposium (CATS 2002), pp 189-198, 2002.

20. Takaoka, T., A Faster Algorithm for the All Pairs Shortest Path Problem and its
Application, Proc. COCOON 2004, LNCS 3106, 278-289.

21. Takaoka, T., An O(n3 log log n/ log n) Time Algorithm for the All Pairs Shortest
Path Problem, Info. Proc. Lett., vol. 96, pp 155–161, 2005.

22. Tamaki, H. and T. Tokuyama, Algorithms for the Maximum Subarray Problem
Based on Matrix Multiplication, Proceedings of the 9th SODA (Symposium on
Discrete Algorithms), (1998) 446-452

23. Zwick, U, A Slightly Improved Sub-Cubic Algorithm for the All Pairs Shortest
Paths Problem, ISAAC 2004, LNCS 3341, pp 921-932, 2004

