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Abstract. We simplify in this paper the algorithm by Chang and Lawler
for the approximate string matching problem, by adopting the concept
of sampling. We have a more general analysis of expected time with the
simplified algorithm for the one-dimensional case under a non-uniform
probability distribution, and we show that our method can easily be gen-
eralized to the two-dimensional approximate pattern matching problem
with sublinear expected time.

1 Introduction

Since the inaugural papers on string matching algorithms were published by
Knuth, Morris and Pratt[11] and Boyer and Moore [5], the problem diversi-
fied into various directions. Let us call string matching one-dimensional pattern
matching. One is two-dimensional pattern matching and the other is approxi-
mate pattern matching where up to k differences are allowed for a match. Yet
another theme is two-dimensional approximate pattern matching. There are nu-
merous papers in these new research areas. We cite just a few of them to compare
our results with the previous works. In the one-dimensional approximate pattern
matching problems, there are two variations. One is the matching problem with
k mismatches, where k mismatches are allowed for a match. The other is that
with & differences, where a difference is a mismatch, a superfluous character, or
a missing character. For the former problem, Landau and Vishkin [12] gave an
algorithm with O(kn) time and O(mlogm) preprocessing time for a pattern,
where m and n are the lengths of pattern and text. For the k difference problem,
Ukkonen [14], Landau and Vishkin [13] and Galil and Park [8] gave algorithms
with O(kn) time for matching and O(m?) time for preprocessing. Ukkonen’s al-
gorithm [15] runs in O(n) time at the cost of exponential preprocessing time. The
approximate string matching problem with minimum differences is discussed in
Erickson and Sellers [7]. These are algorithms with the worst case analysis. For
the expected time, Chang and Lawler gave a very efficient algorithm with sublin-
ear O((kn/m)logm/logr) expected time for matching and O(m) preprocessing
time where r is the size of alphabet. Here we assume the base of logarithm is
2 and we modified the time complexity of their notation of O((kn/m)log, m).
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It is this algorithm that we try to improve in this paper; a much simpler algo-
rithm and a more general analysis of expected time under a wider probabilistic
assumption, and generalization to two-dimensional cases.

Turning to the two-dimensional pattern matching, the first linear time algo-
rithms were given by Baker [3] and Bird [4] with O(n?) time for matching and
O(m?) time for preprocessing. Zhu and Takaoka [18] gave a randomized algo-
rithm with the same time complexity. Precisely speaking, the time complexities
of these algorithms depend on the alphabet size. Recently Galil and Park [9]
gave an algorithm with time complexity independent of the alphabet size. In
the area of two-dimensional approximate pattern matching, Amir and Landau
[1] gave algorithms with O(m?) preprocessing time and (kn?) matching time for
the k£ mismatch problem and O(k?n?) matching time for the k difference prob-
lem where superfluous characters and missing characters are only given in rows
or columns, that is, the effects do not propagate to the next rows or columns.
This definition does not seem as natural as the k difference problem in the
one-dimensional case and the k& mismatch problem seems adequately useful in
graphics. In the present paper, we give an algorithm with sublinear expected
time for the £ mismatch problem, which is derived by applying the sampling
method to the two-dimensional case.

The central idea in this paper is sampling. That is, we take small samples
from the text sparsely and with the aid of information obtained by preprocess-
ing the pattern we discard quickly many candidate positions of the text for an
approximate match. Extracting sample information from the pattern was done
by Karp and Rabin [10] and Vishkin [16], whereby we can have a somewhat
compressed pattern for matching. In the present paper we extract samples from
the text for approximate matching. Samples of O(log m) length are drawn from
text sparsely at O(m/k) periods. Samples of the same length are drawn densely
from pattern, that is, at every position of pattern. The length is chosen so that
the probability of sample match is O(m~3), that is, many positions of text for an
approximate match can be discarded quickly. The period is determined so that
there must be at least one sample match for a position to be a candidate for an
approximate match. To handle samples easily, they are converted into numeri-
cal values. The converted samples of pattern are organized in a data structure,
called position table. The table i1s accessed by the numerical values. Each entry
of the table contains the list of positions of the samples that have the numerical
value corresponding to the table entry. This table is viewed as an approximate
alternative of the position (or suffix) tree of the pattern used in [6], which gives
the positions of the substrings of the pattern. Our matching strategy is simi-
lar to that of [6]. As we scan the text, we convert text samples into numerical
values and access the table with these numerical values. If these values have
positions in the table, that is, text samples match pattern samples, we take up
the corresponding text positions as candidates and perform exhaustive check.
Since the position table is simpler than the position tree, our algorithm is easier
to implement and expected to run faster than the position tree version. A more
important aspect of our algorithm is that it is easy to extend our algorithm to



the two-dimensional approximate pattern matching. The expected time of our
algorithm for the one-dimensional case is basically equal to that of the position
tree version, which is sublinear. The expected time of our algorithm for the two-
dimensional approximate matching is sublinear O((kn?/m?)logm), which is a
new result and expected to have wide applications in graphics, such as template
matching.

In [6], the authors implicitly assume in their analysis a uniform distribution
over the character occurrences. Suppose that we have an overwhelming proba-
bility of the occurrence of a character, then we have almost always a match and
we can not discard candidate positions easily. In our paper, we amend this point
and incorporate into our analysis the probability that a character of pattern
matches one of text under a non-uniform distribution. The expected time in the
previous paragraph is given, assuming this probability is a constant. The base
of logarithm is assumed to be two unless otherwise stated.

2 Probabilistic Analysis of Matching and Sampling

We give the pattern in array pat[0..m — 1] and the text in array tezt[0..n — 1].
We say we have a match at j, if pat[i] = text[j + 7] for i = 0, ---, m — 1, which
is denoted by pat[0..m — 1] = text[j..j + m —1].

We assume that the characters in pat and text are drawn independently from
a fixed distribution with probability p(c) > 0 for character c. Let the alphabet
be ¥. Then we have )~ . p(c) = 1. The probability ¢ that a character in pat
matches one in text is given by ¢ = >~ p*(c). The value of ¢ is minimum 1/r
when all p(c) are equal to 1/r where |X| = r. Therefore we have 1 < 1/¢ < r.

Now let pat be put at position j. Then the probability that pat[i] = text[j+1]
is given by ¢ and this event is independent from the event that pat[i'] = text[j+7')
for 7/ # i. We extend this fact to the following lemma.
Lemma 1. Let the cvent that patl[i..i + € — 1] = text[j..j + £ — 1] be denoted
by Eve(i,j). We assume that { is a fized length of the substrings. Then we have
that prob[Eve(i, j)] = ¢°.

The lemma is illustrated in the following figure.

] 1+ £

J J+e
Fig. 1. Events Eve(i, j)

Now we introduce the idea of sampling into pat and text. Samples are sub-
strings of length ¢ of pat and text. We extract samples densely from pat and
sparsely from text. That is, we define samples from pat, denoted by p_sam(i),
by

p-sam(i) = pat[i..i+ € —1], fori=0,1,---,m — ¢,



and samples from text, t_sam(j), by
t.sam(j) =text[j..j+£€—1], for j=0,h,2h,---,(L—1)h,

where L = [n/h] and h is the sampling period. For our approximate pattern
matching purpose, we determine the values of £ and h as follows:

¢ =[3logm/log(1/q)], h = [m/(k+1)] ,

where k is the number of differences allowed for approximate matching. As we
require that there be no overlaps between samples in Lemma 2, we need the
condition that k < O(mlog(1/q)/logm). The value of £ is determined so that
the probability that samples of pat and texzt match is very small and thus many
candidate positions for approximate matches can be discarded quickly. The value
of h is determined to detect unallowable differences efficiently as we see in the
following lemma.

Lemma 2. If we have an approzimate match with up to k differences when pat
1s positioned at j, there is at least one sample of pat that matches one of those
of text.

A similar idea of partitioning the pattern into k + 1 sections is seen in [2] and
[17], in which the idea of sampling is not used. The effect of the length ¢ of
samples is seen from the following lemma.

Lemma 3. When pat is positioned at j, the probability that d samples of pat
matches those of text is given by (k'gl)qdz < (k'ji'l)m_?’d.

A statement on probabilistic analysis in [6] is reproduced in the following.

Lemma4. Let pat be positioned at j. Then several samples of text may maich
the corresponding samples in pat. Similar events may occur if pat is positioned
at other positions j'. Based on these events, we do some work on the text starting
at j. Then we have

E[E[work at start position j given any conditioning))
= Flwork at start position j] ,

where E[X] is the expected value of random variable X .

3 Conversion of Sample Strings into Numbers

To handle the samples of pat and text easily, we convert them into numbers.
Let an arbitrary array a[0..£ — 1] of integer type 0..r — 1 be converted into an
integer value num(a) by

num(a) = af0lr* ' +a[1]r* "2+ - +alt —1] .

The function num is a bijection between r* possible strings of length ¢ over
alphabet 0..r —1 and the integers 0, - - -, # — 1. The conversion of the samples of
pat and text into numbers can be done by converting each character ¢ into integer
num(c) which is a bijection between the alphabet and the integers 0,---,r — 1
and the following algorithms.



Algorithm 1.
Compute num(p-sam(0)) = num(pat[0])r*=" + - - - + num(pat[¢ — 1])
by Horner’s method;
Compute M = 74
for i :=1tom—{do
num(p_sam(?)) :=num(p-sam(i — 1))r — num(pat[i — 1)) M
+num(patfi + £ — 1]);
Algorithm 2.

for j := 0 to (L — 1)h step h do compute num(t_sam(j))
by Horner’s method.

The computing time of Algorithm 1 is O(m) and that of Algorithm 2 is
O((n/(mlog(1/q)))klog m).

4 Construction of Position Table

The position table of pat is similar to the suffix tree used in [6]. It gives the
positions of the samples in pat like the suffix tree gives the positions of substrings
of pat. The b-th component of the position table is ¢, ¢[b], is the list of positions
i of p_sam(7) such that b = num(p_sam(t)). Technically ¢[b] is the pointer to
the first element of the list. We can construct the position table by the following
algorithm. Let M = rf = O(m?1°87/108(1/9)),
Algorithm 3.

for b :=0 to M — 1 do t[b] :=nil;

for : =0 to m — ¢ do begin

b := num(p-sam(?)); Append i to ¢[b]

end.
The computing time of Algorithm 3 is O(M). To avoid the O(M) time and
space, we use a hash table of O(m) size. That is, we compute the value of f(b)
of b with some hash function f such as the function by the linear congruential
method and access the table with f(5). Then the positions are distributed over
the table with the expected size of list ¢(b) being O(mp(b)) where p(b) is the
probability of the occurrence of p_sam(?) such that b = p_sam(%).

5 The Main Matching Algorithm

The idea of approximate matching in this paper is to find possible positions on
text at which pat may have an approximate match by using b = num(t_sam(j))
and the positions in ¢[b]. More specifically, if  is in ¢[b], the position j —i on text
is a candidate for an approximate match and so we perform an exhaustive check
starting at j—¢ on text. By an exhaustive check we mean we use an algorithm for
the k-difference problem for pat[0..m —1] and text[j—i..j—i+m—1]. We come
to the end of pat with no more than k-differences, reporting ”success,” or find



k 4+ 1 differences on the way and discard the position j — i. Using the algorithm
for the k-difference problem in [8], we can do exhaustive check in O(m?) time
with O(mlogr) time for preprocessing the pattern.

Now we describe the data structure array pos[0.. L — 1] for maintaining the
candidate positions. Each component of pos is a list of positions. If ¢_sam(j)
matches p_sam(7), we append the value of j — i to pos[j/h]. All components of
pos are initialized to nil.

Algorithm 4. Main matching algorithm.
for j :=0 to (L — 1)h step h do pos[j/h] := nil;
for j := 0 to (L — 1)h step h do begin
b := num(t_sam(j));
for i € t[b] do append j — i to pos[j/h]
end;
for z := 0 to L — 1 do begin
for u € pos[z] do exhaustive check at u;
if ”success” is reported then output(u)
end;
if ”success” is never reported then output(”no match”).

The expected number of “append” operations executed in the fourth line is given

by

rf—1 rf—1
Z mp? () < m-r* - (1/r**) = m/M, since Z p(b) =1
b=0 b=0

and the left hand side is maximum when all p(b) are equal. Therefore the total
time for “append” operations is bounded by O(kn/M).

The expected time T'(j) for the exhaustive check at j over text is bounded
by Lemma 3 as follows:

4= (M5 ) meo dm? < 0Gm)

d=1

From Lemma 4, we can have an algebraic sum of 7(j) for the total expected
time for exhaustive checks, which is O(kn/m). Now we summarize the complex-
ities as follows:

Algorithm 1:  O(m)

Algorithm 2:  O((n/m)klogm/log(1/q))
Algorithm 3:  O(m)

Algorithm 4:  O(kn/m).

Since the complexity of Algorithm 2 is dominant, assuming logr < O(log m), we
have the following summary.

Preprocessing the pattern: O(mlogr)
Text analysis: O((kn/m)logm/log(1/q))



Keeping the same analysis, we can further relax the above condition of logr <
O(logm) to almost no limitation if we increase the factor 3 in the definition of
£ in Section 2.

To make the worst case time O(kn), we modify Algorithm 4 slightly. We
maintain the last position where an exhaustive check is done in the variable last,
whose value is initially -1. We do exhaustive check at the candidate position u
if u > last for pat[0..m — 1] and text[u .. u + 2m — 1] using the algorithm for the
k-difference problem in [8] and update last to u+m. To ensure correctness of this
algorithm, all the candidate positions must be sorted in increasing order. This
can be done by making the list cand = pos[0]||pos[1]|| - - - ||pos[L — 1], where “||”
means concatenation of lists, and sort the list cand. This sorting can be done
efficiently in the following way. We first divide the list into sections of length
k+1 and possibly a remaining section and sort the list within the sections. Next
merge consecutive even numbered sections and odd numbered sections. That is,
merge section 0 and section 1, merge section 2 and section 3 and so on. Lastly
merge consecutive odd numbered sections and even numbered sections. That is,
merge section 1 and section 2, merge section 3 and section 4, and so on. This
sorting method is correct since elements in the list do not move more than &k + 1
positions. This task of sorting will be done in an array rather than in a linked
list. The candidate position u is supposed to be taken from this sorted list (or
array) in ascending order. The time for sorting is O((n/m)klog k).

Now exhaustive checks are done at most [n/m] times, each spending O(km)
time. Hence the worst case time is O(kn). The average case analysis is basically
the same as the above analysis for Algorithm 4.

6 Two Dimensional Matching

In this section we describe briefly how to apply the technique of sampling to the
two dimensional approximate pattern matching. Things become two-dimensional
in this section. The pattern and text are given by pat[0..m — 1,0..m — 1] and
text[0..n—1,0..n—1]. We say we position pat at (i, j), if we align pat[0,0] with
text[i, 7], pat[0, 1] with text[i, j+1], - - -, pat[m —1,m — 1] with tezt[i+m—1,j+
m — 1]. If we have no more than k character mismatches with this positioning,
we say we have an approximate match. That is, we consider the k-mismatch
problem in this section.

Samples are (¢,£) square portions of pat and text. Samples from pat are
drawn densely, that is, consecutively horizontally and vertically. Samples from
text are drawn sparsely, that is, at periods of length h horizontally and vertically.
The size ¢ and period h are determined by

¢=[Alogm/log(1/q) |, h=[m/VEk+1].

Similarly to the one dimensional case, we can say that the positioning of pat at
any (,j) has at least one sample match if it has an approximate match.



The function num is defined for array a[0..£ — 1,0..¢ — 1] of integer type
0..r —1 as follows:

Al = afi, 010" ™" + ali, 1P + -+ afi, £ = 1],
num(a) = A[QJR*"" + A[1JR*=2 4+ --- 4+ A[¢ — 1], where R = r* .
Then the function num is a bijection between rt possible array values and
integers 0, - - - %" — 1. The function values of num of p-pat(?',j') and t_sam(1, j)
are defined using the above defined num and conversion of characters to integers
0,--+,7 — 1. It can be shown that the computing time for num(p_sam(s’, j'))
for #/,j' = 0,---,m — £ is O(m?) and the time for num(t_sam(i, j)) for i,j =
0, ,h, -, (L—=1)his O((n?/m?*)klogm/log(1/q)), where L = [n/h].

The position table ¢ is one-dimensional. The component ¢[b] is the list of posi-
tions (4, j') such that b = num(p_sam(i, j')). The size of t is O((m*)'°8"/1o8(1/4)),
Since the number of sample positions (i’ j’) is not greater than m?, the construc-
tion of ¢ can be optimized using a similar technique to that in Section 4.

To hold the candidate positions for approximate matching, we use two-
dimensional array pos[0.. L—1,0.. L—1]. We append (i—?', j—j') to pos[i/h, j/h]
if b = num(t_sam(t,j)) and (¢, ;') is in ¢[b], for i,j = 0, h,---,(L — 1)h. Note
that array elements pos[i, j] are lists of pairs of integers. The main matching
algorithm goes scanning the array pos as in Algorithm 4. The exhaustive check
is literally exhaustive check; it compares pat and text character by character
until it comes to the end of pat and report “success”, or come up with k+ 1 mis-
matches and report “failure.” The probability that the position (, j) has at least
one sample match is given by m~%. From this we have that the expected time
for the exhaustive checks is given by O(n?/m?). To summarize the computing
times, we have that

Time for preprocessing the pattern: O(m?)
Expected time for matching;: O((kn%/m?*)logm/log(1/q)) .

The condition logr < O(klogm) can be relaxed as in the one-dimensional case.

To keep the worst case time to be O(kn?) for theoretical reasons although the
above algorithm is practical and efficient, we modify it in a similar way to that
in Section 6. Specifically we modify our exhaustive check for candidate position
(u,v) to the algorithm in [1] for the k-mismatch problem, with pat[0..m —
1,0..m—1] and text[base(u) .. base(u)+2m—1 base(v) .. base(v)+2m—1], where
base(u) = (u div m)m and ‘div” is division with truncation. If we do exhaustive
check for (u,v), we can exclude the portion of m? area, text[base(u) .. base(u) +
m—1, base(v) .. base(v) + m — 1] from the text for later exhaustive checks. This
exclusion is accomplished by incorporating a two-dimensional Boolean array
done whose components are initialized to “no”. We do exhaustive check for
(u,v) if done[base(u),base(v)] =“no” and let done[base(u), base(v)] =“yes”. We
need some care at portions of text near the left and bottom ends if 2m does
not divide n. Note that exhaustive checks are done at most [n?/m?] times, each
spending O(km?) time. The expected time for main matching remains of the
same order and the worst case time is kept to be O(kn?).



7 Concluding Remarks

An interesting aspect of our algorithm is that the dominant part of computing
time is that of text sampling, which is not subject to probabilistic fluctuation.
That is, the expected time is almost worst case time. The probability that the
time of Algorithm 4 exceeds the time for text sampling is very small and will be
evaluated by using its standard deviation in the future research.
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