
Partial Solution and Entropy

Tadao TAKAOKA

Department of Computer Science, University of Canterbury
Christchurch, New Zealand

Correspondence E-mail : tad@cosc.canterbury.ac.nz

Abstract. If the given problem instance is partially solved, we want
to minimize our effort to solve the problem using that information. In
this paper we introduce the measure of entropy H(S) for uncertainty in
partially solved input data S(X) = (X1, ..., Xk), where X is the entire
data set, and each Xi is already solved. We use the entropy measure to
analyze three example problems, sorting, shortest paths and minimum
spanning trees. For sorting Xi is an ascending run, and for shortest
paths, Xi is an acyclic part in the given graph. For minimum spanning
trees, Xi is interpreted as a partially obtained minimum spanning tree
for a subgraph. The entropy measure, H(S), is defined by regarding
pi = |Xi|/|X| as a probability measure, that is, H(S) = −nΣk

i=1pi log pi,
where n = Σk

i=1|Xi|. Then we show that we can sort the input data S(X)
in O(H(S)) time, and solve the shortest path problem in O(m + H(S))
time where m is the number of edges of the graph. Finally we show that
the minimum spanning tree is computed in O(m + H(S)) time.

Keywords:entropy, complexity, adaptive sort, minimal mergesort, ascending
runs, shortest paths, nearly acyclic graphs, minimum spanning trees

1 Introduction

The concept of entropy is successfully used in information and communication
theory. In algorithm research, the idea is used explicitly or implicitly. In [7],
entropy is explicitly used to navigate the computation of the knapsack problem.
On the other hand, entropy is used implicitly to analyze the computing time of
various adaptive sorting algorithms [10]. In this paper, we develop a more unified
approach to the analysis of algorithms using the concept of entropy. We regard
the entropy measure as the uncertainty of the input data of the given problem
instance, that is, the computational difficulty of the given problem instance.

First let us describe the framework of amortized analysis. Let S0, S1, ...,
SN be the states of data such that S0 is the initial state and SN is the final
state. The computation in this paper is to transform Si−1 to Si at the i-th step
for i = 1, , , , , N . The potential of state S is denoted by Φ(S), which describes
some positive aspect of data. That is, increasing the potential will ease the
computation at later steps. The actual time and amortized time for the i-th step
are denoted by ti and ai. We use the words “time” and “cost” interchangeably.
The amortized time is defined by the accounting equation

ai = ti − ∆Φ(Si) (1),

where ∆Φ(Si) = Φ(Si)−Φ(Si−1). That is, the amortized time is the actual time
minus the increase of potential at the i-th step. By summing up the equation
over i, we have

Σai = Σti + Φ(S0) − Φ(SN), or Σti = Σai − Φ(S0) + Φ(SN).

Let the state of data be given by a decomposition of a set X as S(X) =
(X1, ..., Xk). Let |X | = n, ni = |Xi| and pi = ni/n. Note that

∑

pi = 1. We
define the entropy of a decomposition of X , H(S(X)), abbreviated as H(S), by

H(S) = −n

k
∑

i=1

pi log pi =

k
∑

i=1

|Xi| log(|X |/|Xi|) (2)

Normally entropy is defined without the factor of n, the size of the data set.
We include this to deal with a dynamic situation where the size of the data
set changes. Logarithm is taken with base 2 unless otherwise specified. Since pi

(i = 1, · · · , k) can be regarded as a probability measure, we have

0 ≤ H(S) ≤ n log k

and the maximum is obtained when |Xi| = n/k (i = 1, · · · , k). We capture the
computational process as a process of decreasing the entropy in the given data
set X . We assume H(S0) ≥ H(S1) ≥ ... ≥ H(SN). We use −H(S) for the
potential in equation (1). The accounting equation becomes ai = ti − ∆H(Si),
where ∆H(Si) = H(Si−1) − H(Si). That is, the amortized time is the actual
time minus the decrease of entropy at the i-th step. The entropy is regarded as
a negative aspect of the data, i.e., the less entropy, the closer to the solution.

Let T and A be the actual total time and the amortized total time. Sum-
ming up ai for i = 1, ..., N , we have A = T + H(SN) − H(S0), or T =
A+H(S0)−H(SN). We call this process of summing up amortized times over the
computational steps “summing-up”. In the following we see three applications,
where A can be easily obtained. In many applications, H(SN) = 0, meaning that
the total time is A plus the initial entropy. We also have a reasonable assumption
that −

∑k

i=1 pi log pi > 0 for the initial state, meaning H(S0) = Ω(n).
Let S′(X) = (X ′

1, ..., X
′

k′) be a refinement of S(X) = (X1, ..., Xk), that is,
S′(X) is a decomposition of X and for any X ′

i there is Xj such that X ′

i ⊆ Xj .
Then we have H(S) ≤ H(S′). As the entropy is a measure of uncertainty, we
can say S(X) is more solved than S′(X).

The concept of amortized cost and actual cost is a relative one. That is, the
actual time itself may be formulated as amortized time and actual time at a lower
level of computation. Specifically, the actual time ti in the accounting equation
can be like tij − (Ψi,j−1 −Ψi,j), where Ψ is another potential associated with the
lower level computation. In such a case, summing-up takes place over indices i
and j. Thanks to the linear property of the accounting equation, we can analyze
amortized time on the upper level and lower level computation separately. We
will see an example of a two-level amortized analysis in Section 5.

In later sections, we show three interpretations of Xi’s. In sorting, Xi’s are
ascending runs which are regarded as solved. In shortest paths, Xi’s are acyclic
parts of the given graph, which can be processed without the effort of finding
the minimum in the priority queue. In the minimum spanning tree problem, Xi

is the set of vertices of a partially solved minimum spanning tree for a subgraph.
The main point of the paper is to offer a new method for algorithm analysis

rather than designing new algorithms.

2 Application to adaptive sort

Adaptive sorting is to sort the list of n numbers into increasing order as efficiently
as possible by utilizing the structure of the list which reflects some presortedness.
See Estivill-Castro and Wood [3] for a general survey on adaptive sorting. There
are many measures of disorder or presortedness. The simplest one is the number
of ascending runs in the list. Let the given list X = (a1, a2, · · · , an) be divided
into k ascending runs Xi (i = 1, · · · , k), that is, S(X) = (X1, X2, · · · , Xk) where

Xi = (a
(i)
1 , · · · , a

(i)
ni) and a

(i)
1 is the |X1| + · · · + |Xi−1| + 1-th element in X .

We denote the length of list X by |X |. S(X) is abbreviated as S. Note that

a
(i)
1 ≤ · · · ≤ a

(i)
ni for each Xi and a

(i)
ni > a

(i+1)
1 if Xi is not the last list. The sort

algorithm called natural merge sort [5] sorts X by merging two adjacent lists
for each phase halving the number of ascending runs after each phase so that
sorting is completed in O(n log k) time. Mannila [6] proved that this method is
optimal under the measure of the number of ascending runs.

In this paper we generalize the measure RUNS (S) of the number of ascending
runs into that of the entropy of ascending runs in X , denoted by H(S). Then we
analyze a sorting algorithm, called minimal merge sort, that sorts X by merging
two minimal length runs successively until we have the sorted list. We show
that the time for this algorithm is O(H(S)) and is optimal under the measure
of H(S). Hence the measure H(S) derived from runs-entropy is sharper than
RUNS measure of O(n log k).

The idea of merging two shortest runs may be known. The algorithm style
based on “meta-sort” in the next section is due to [10].

3 Minimal mergesort

All lists are maintained in linked list structures in this section. Let S(X) =
(X1, · · · , Xk) be the given input list such that each Xi is sorted in ascending
order. Re-arrange X into S′(X) = (Xi1 , · · · , Xik

) in such a way that |Xij
| ≤

|Xij+1
| (j = 1, · · · , k − 1), that is, (X1, · · · , Xk) is sorted with |Xi| as key. We

call this “meta-sort.” Since each |Xij
| is an integer up to n, we can obtain S′(X)

in O(n) time by radix sort. Now we sort S′(X) by merging two shortest lists
repeatedly. Formally we have the following. Let M and L be lists of lists, whereas
Wi (i = 1, 2) and W are ordinary lists. By the operation M ⇐ L, the leftmost list
in L is moved to the rightmost part of M . By the operation Wi ⇐ M (i = 1, 2)

the leftmost list of M is moved to Wi. By the operation M ⇐ W , W is moved
to the rightmost part of M . First(L) is the first list in L.

Algorithm 1 (Minimal mergesort)

1 Meta-sort S(X) into S′(X) by length of Xi;
2 Let L = S′(X);
3 M := ∅;
4 M ⇐ L;
5 if L 6= ∅ then M ⇐ L;
6 for i := 1 to k − 1 do begin

7 W1 ⇐ M ;
8 W2 ⇐ M ;
9 W := merge (W1, W2);

10 while L 6= ∅ and |W | > |first(L)| do M ⇐ L;
11 M ⇐ W
12 end

{W is the sorted list}.

Lemma 1. If W2 is not an original Xi for any i at line 9, it holds that |W2| ≤
2
3 |W |.

Proof. Suppose to the contrary that |W2| > 2|W1|. Then for the previously
merged lists V1 and V2, that is, W2 = merge (V1, V2), we have |V1| > |W1| or
|V2| > |W1|. Thus V2 or V1 must have been merged with W1 or a shorter list, a
contradiction.

We measure the computing time by the number of key comparisons in the merge
operation at line 9, where the straight-forward merging is done with |W1|+|W2|−
1 key comparisons.

Lemma 2. We slightly modify the definition of amortized time; it is the actual
time minus constant times decrease of entropy. Then the amortized time for the
i-th merge is not greater than zero.

Proof. Let ni = |Xi| for i = 1, ..., k. In particular, |W1| = n1 and |W2| = n2.
The change of entropy occurs only with n1 and n2. Thus, noting n1 ≤ n2 ≤ 2n1,
the decrease of entropy is

∆H = n1 log(n/n1) + n2 log(n/n2) − (n1 + n2) log(n/(n1 + n2))
= n1 log(1 + n2/n1) + n2 log(1 + n1/n2)
≥ n1 log 2 + n2 log(3/2) ≥ log(3/2)(n1 + n2)

Thus
ai = n1 + n2 − 1 − ∆H/ log(3/2) ≤ 0

Theorem 1. The algorithm minimal mergesort sorts S(X) = (X1, · · · , Xk)
where each Xi is an ascending sequence in O(H(S)) time.

Proof. Theorem follows from Lemma 2 and the initial entropy is given by
H(S).

Example. Let |X1| = 2, |Xi| = 2i−1 (i = 2, · · · , k − 1) and n = 2k. Then
minimal mergesort sorts S(X) in O(n) time, since H(S) = O(n), whereas natural
mergesort takes O(n log log n) time to sort S(X).

Lemma 3. Any sorting algorithm takes at least Ω(H(S)) time when the entropy
of ascending runs in S(X) is H(S) and |Xi| ≥ 2 for i = 1, · · · , k.

Proof. Sorting S(X) into S′(X) = (a′

1, · · · , a
′

n) where a′

1 ≤ · · · ≤ a′

n means
that S′(X) is a permutation of S(X). To establish a lower bound, we can assume

that all elements in X are different. Let Xi = (a
(i)
1 , · · · , a

(i)
ni). Let a

(i)
ni (i =

1, · · · , k) be fixed to be the i-th largest element in X . Then there are
(

n−k

n1−1

)

possibilities of X1 being scattered in X ′. Since the constraint of a
(1)
n1

> a
(2)
1

is satisfied by the choice of a
(1)
n1

, we have
(

n−k−n1+1
n2−1

)

possibilities of X2 being
scattered in X ′. Repeating this calculation yields the number of possibilities N
as

N =
(n − k)!

(n1 − 1)! (n − k − n1 + 1)!
×

(n − k − n1 + 1)!

(n2 − 1)! (n − k − n1 − n2 + 2)!
×

· · ·
(nk−1 − 1)!

(nk − 1)! 0!

=
n !

n1! · · ·nk!
·

n1 · · ·nk

n(n − 1) · · · (n − k + 1)
.

Since the number of possible permutations is not fewer than this, we have the
lower bound T on the computing time based on the binary decision tree model
approximated by T = log N . In the following we use natural logarithm for no-
tational convenience. The result should be multiplied by log2 e. We use the fol-
lowing integral approximation.

n log n − n + 1 ≤
∑n

j=1 log j ≤ n log n − n + log n

T is evaluated by using the first inequality for n and the second for ni,

T = log N ≥ log n! −
∑k

i=1 log ni! +
∑k

i=1(log ni − log(n − i + 1))

=
∑k

i=1 ni log n
ni

− k log n + 1

Since
∑

ni log n
ni

is minimum when n1 = · · · = nk−1 = 2 and nk = n− 2(k − 1),

2T − H(S)

≥
∑

ni log
n

ni

− 2k log n + 2

≥ 2(k − 1) log
n

2
+ (n − 2k + 2) log

n

n − 2k + 2
− 2k log n + 2

= (n − 2k) log
n

n − 2k + 2
− 2 log(n − 2k + 2) + 4

≥ −2 log(n − 2k + 2),

since 1 ≤ k ≤ n/2. On the other hand we can show T ≥ log(n − 2k + 2). Thus
we have T ≥ H(S)/4 = Ω(H(S)).

If ni=1 for some i, a
(i)
ni and a

(i+1)
1 form a part of a descending sequence. By revers-

ing the descending sequences, we can guarantee that the sequence is decomposed
into ascending runs of length al least 2. Let us extend minimal mergesort with
this extra scanning in linear time, and define the entropy on the modified se-
quence. From this extension and the above lemma we see that minimal mergesort
is asymptotically optimal for any sequence under the entropy measure. We can
define entropy by decomposing the given sequence in non-consecutive portions.
Minimal mergesort is not optimal under the entropy measure defined in this way.
There are more entropy measures defined in [10].

4 Application to shortest paths for nearly acyclic graphs

Let G = (V, E) be a directed graph where V is the set of vertices with |V | = n
and E is the set of edges with |E| = m. The non-negative cost of edge (vi, vj)
is denoted by c(vi, vj). Let OUT (v) (also IN(v)) be the list of edges from (to)
v expressed by the set of the other end points of edges from (to) v. A brief
description of Dijkstra’s algorithm follows. Let S be the solution set, to which
shortest distances have been established by the algorithm. The vertices in V −S
have tentative distances that are those of the shortest paths that go through S
except for the end points. We take a vertex in V − S that has the minimum
distance, finalize it, and update the distances to other vertices in V − S using
edge list OUT (v). If we organize Q by a Fibonacci heap or 2-3 heap [9], we can
show the single source shortest path problem can be solved in O(m + n log n)
time. We call this algorithm with one of those priority queues the standard single
source algorithm. We assume the graph is connected from the source. Note that
we use the same symbol S for the state of data and the solution set, hoping this
is not a source of confusion.

We give the following well known algorithm [11] and its correctness for acyclic
graphs for the sake of completeness. See [11] for the proof. It runs in O(m) time,
that is, we do not need an operation of finding the minimum in the priority
queue.

Algorithm 2 {G = (V, E) is an acyclic graph.}

1 Topologically sort V and assume without loss of generality); V = {v1, · · · , vn}
where (vi, vj) ∈ E ⇔ i < j;

2 d[v1] := 0; {v1 is the source}
3 for i := 2 to n do d[vi] := ∞;
4 for i := 1 to n do

5 for vj such that (vi, vj) ∈ E do

6 d[vj] := min{d[vj], d[vi] + c(vi, vj)}.

Lemma 4. At the beginning of Line 5 in Algorithm 2, the shortest distances
from v1 to vj (j < i) are computed. Also at the beginning of line 5, distances
computed in d[vj] (j ≥ i) are those of shortest paths that lie in {v1, · · · , vi−1}
except for vj. Thus at the end shortest distances d[vi] are computed correctly for
all i(1 ≤ i ≤ n).

Abuaiadh and Kingston [1] gave a result by restricting the given graph to
being nearly acyclic. When they solve the single source problem, they distinguish
between two kinds of vertices in V − S. One is the set of vertices, “easy” ones,
to which there are no edges from V − S, e.g., only edges from S. The other is
the set of vertices, “difficult” ones, to which there are edges from V − S. To
expand S, if there are easy vertices, those are included in S and distances to
other vertices in V − S are updated. If there are no easy vertices, the vertex
with minimum tentative distance is chosen to be included in S. If the number
of such delete-minimum operations is t, the authors show that the single source
problem can be solved in O(m+n log t) time with use of a Fibonacci heap. That
is, the second term of the complexity is improved from n log n to n log t. If the
graph is acyclic, t = 1 and we have O(m+n) time. Since we have O(m+n logn)
when t = n, the result is an improvement of Fredman and Tarjan with use of the
new parameter t. The authors claim that if the given graph is nearly acyclic, t
is expected to be small and thus we can have a speed up.

The definition of near acyclicity and the estimate of t under it is not clear,
however. We will show that the second term can be bounded by the entropy
derived from a structural property of the given graph.

Algorithm 3 {Single source shortest paths with v0 being the source} [1], [8]

1 for v ∈ V do if v = v0 then d[v] := 0 else d[v] := ∞;
2 Organize V in a priority queue Q with d[v] as key;
3 S := ∅;
4 while S 6= V do begin

5 if there is a vertex v in V − S with no incoming edge from V − S then

6 Choose v
7 else

8 Choose v from V − S such that d[v] is minimum;
9 Delete v from Q;

10 S := S ∪ {v} ;
11 for w ∈ OUT (v) ∩ (V − S) do d[w] := min{d[w], d[v] + c(v, w)}
12 end.

It is shown in [1] that a sequence of n delete, m decrease-key and t find-min
operations is processed in O(m + n log t) time, meaning that the single source
shortest path problem can be solved in the same amount of time.

We use the 2-3 heap for priority queue Q with the additional operation of
delete. Let v1, , , , , vk be deleted between two consecutive find-min operations
such that v1 is found at a find-min operation at line 8, and vk is found at line 6
immediately before the next find-min. Each induced subgraph from them forms
an acyclic graph, and they are topologically sorted in the order in which vertices
are chosen at line 6. Thus they can be deleted from the heap without the effort
of find-min operations. Let V1, ..., Vt be the sets of vertices such that Vi is the
acyclic set chosen following the i-th find-min operation and just before the next
find-min. We call this set the i-th acyclic set. Note that the source is chosen
by the first find-min. Then S(V) = (V1, ..., Vt) forms a decomposition of the set

V . We denote the entropy of this decomposition by H(S). Lemma 6 in the next
section shows that t find-min operations with |V1|+...+|Vt| deletes interleaved in
Algorithm 3 (each i-th find-min followed by |Vi| deletes) can be done in O(H(S))
time. Let ms be the number of edges examined at line 11 between the s-th find-
min operation and the (s + 1)-th find-min operation. Between these operations,
O(ms) amortized time is spent at line 11. The total time for line 11 becomes
O(m).

When t = 1, the whole graph is acyclic, and we can solve the single source
problem in O(m) time by Lemma 4. The time for building Q at line 2 is absorbed
in O(m). Thus we have the following theorem.

Theorem 2. Algorithm 3 solves the single source shortest path problem in O(m+
H(S)) time.

5 Analysis of delete operations

We maintain the priority queue for the single source shortest path problem by a
2-3 heap [9]. In traditional priority queues, decrease-key, insert and delete-min
operations are defined. We define a delete operation on a 2-3 heap. When we
delete node v, we remove the subtree rooted at v similarly to decrease-key on v,
entailing a reshape of the work space. After destroying v, we merge the subtrees
of v at the root level. The amortized time for a delete is proportional to the
number of children, which is O(log nv), where nv is the number of descendants
of node v to be deleted. A delete is defined on a Fibonacci heap in [1].

Let us delete nodes vj(j = 1, ..., k) in the batch mode from a 2-3 heap of size
n. In the batch mode, we disconnect all children of all vj and merge them at the
root level. In other words, we do not process vj one by one. Assume the number
of descendants of vj is nj . The total amortized time T of deleting v1, ..., vk in the
batch mode is T = O(log n1+ ...+log nk). Noting that n1+ ...+nk ≤ cn for some
constant c, T is maximized as T = O(k log(n/k)) when n1 = ... = nk = cn/k.
Thus

Lemma 5. k consecutive delete operations on a 2-3 heap of size n can be done
in O(k log(n/k)) time.

Now we perform t batches of delete operations. Assume the i-th batch has ki

delete operations. Let the time for the i-th batch of delete operations be denoted
by Ti. Since Ti = O(ki log(n/ki)) by Lemma 5, we have the total time for all
deletes bounded within a constant factor by

k1 log(n/k1)+...+kt log(n/kt) = n(Σt
i=1(ki/n) log(ki/n)) = n(−Σt

i=1pi log pi),
where pi = ki/n. We define H(S) = −nΣt

i=1pi log pi. Let us perform those t
batches of delete operations after t find-min operations; each batch after each
find-min. One find-min operation can be done in O(log n) time. Thus the total
time becomes O(t log n + H(S)), which is further simplified to O(H(S)) by the
following lemma.

Lemma 6. For t ≥ 2, t logn ≤ O(H(S)). Thus the time for heap operations
described above is bounded by O(H(S)).

Proof. H(S) is minimum when k1 = ... = kt−1 = 1, and kt = n − t + 1.
Thus 2H(S) ≥ 2(t − 1) log n + 2(n − t + 1) log(n/(n − t + 1)) ≥ t log n

Remark. In terms of amortized analysis in Section 1, we can define ai and ti
in the following way. Let V (s) = Vs ∪ ...∪ Vt. We define the state of data set, Ss,
to be the data set V (s) decomposed as above. The initial state S = S1 is given
by V1 ∪ ... ∪ Vt. The entropy of the state of data is defined for the beginning of
the s-th find-min at line 8 using V (s) by

H(Ss) = Σt
i=s|Vi| log(|V (s)|/|Vi|)

Noting that |V (s)| ≥ |V (s+1)|, the decrease of entropy at the beginning of the
next find-min operation is

∆H(Ss+1) = Σt
i=s|Vi| log(|V (s)|/|Vi|) − Σt

i=s+1|Vi| log(|V (s+1)|/|Vi|)

≥ |Vs| log(|V (s)|/|Vs|)

We define the actual time and amortized time to be those for the stage from
the s-th find-min to the (s + 1)-th. The actual time ts for stage s is given by

ts = O(ms + |Vs| log(|V (s)|/|Vs|) + log n).

This is because we inspect O(ms) edges, perform O(Vs) deletes in the heap
of size |V (s)|, and spend O(log n) time for a find-min. We interpret the above
formula as ts ≤ cs(ms + |Vs| log(|V (s)|/|Vs|) + log n) with some constant cs > 0.

The amortized time for the s-th stage is slightly modified with constant cs,
and given as

as = ts − cs∆H(Ss+1)

≤ cs(ms + |Vs| log(|V (s)|/|Vs|) + log n) − cs|Vs| log(|V (s)|/|Vs|)
≤ cs(ms + log n)

Using constant c = max{cs} and noting H(St) = 0, we have

T ≤ A + c(H(S1) − H(St)) ≤ O(m + t log n + H(S1)) = O(m + H(S))

Note that when we perform summing-up over as, we also perform summing-up
over actual and amortized times for operations on the 2-3 heap. In this sense,
the above is a “two-level” amortized analysis.

Remark. In [1], O(t log n + H(S)) is bounded by O(n log t). Thus our analysis
of O(t log n + H(S)) ≤ O(H(S)) is sharper.

6 Relationship with 1-dominator

As a definition of near-acyclicity, the definition and algorithm for a 1-dominator
decomposition is given in [8]. The decomposition is given by the set of disjoint
sets, called 1-dominator sets, whose union is V . A 1-dominator set dominated by
a trigger v, Av, is the maximal set of vertices w such that any path from outside
Av to w must go through v, and the subgraph induced by Av is an acyclic graph.
Let IN(v) = {u|(u, v) ∈ E}. Av is formally defined by the maximal set satisfying
the following formula for any w.

The induced graph from Av is acyclic, v ∈ Av and
(w ∈ Av)&(w 6= v) → (IN(w) 6= φ)&(IN(w) ⊆ Av)

In [8] it is shown V is uniquely decomposed into several Av’s, and the time for this
decomposition is O(m). The 1-dominator decomposition is used for identifying
the set of the triggers, R. Only triggers are maintained in the heap. Once the
distance to a trigger is finalized, the distances to members of the 1-dominator set
are finalized through Algorithm 2 in time proportional to the number of edges
in the set. At the border of the set. the distances to other triggers are updated.
The time for the single source problem becomes O(m + r log r), where r is the
number of triggers, that is, r = |R|.

We show that the entropy H(S) in Section 4 is bounded by the entropy
defined by the 1-dominator decomposition.

Theorem 3. The decomposition by 1-dominator sets is a refinement of the de-
composition defined by Algorithm 3.

Proof. Suppose a vertex v is obtained by find-min at line 8 and v is not a
trigger. Then v is inside some 1-dominator set. Since the distance to the cor-
responding trigger is smaller, the trigger must be included in the solution set
earlier, and v must have subsequently been deleted from the heap, a contradic-
tion. Thus v is a trigger. Then the 1-dominator set is subsequently deleted from
the heap, and possibly more 1-dominator sets. Thus the 1-dominator decompo-
sition is a refinemment of the decomposition S(V).

The decomposition by Algorithm 3 is dynamically defined, i.e., it cannot be
defined statically before the algorithm starts. On the other hand, the algorithm
based on the 1-dominator decomposition is more predictable as the preprocessing
can reveal the 1-dominator decomposition and its entropy, which bounds the
entropy defined by Algorithm 3.

In [8], the single source algorithm is given in a slightly different way. It main-
tains only triggers in the heap, and the distances between triggers are given by
those of pseudo edges, which are defined between triggers through the inter-
vening acyclic part and obtained in O(m) time. In other words, the standard
single source algorithm runs on this reduced graph. Thus the time becomes
O(m+r log r), which may be better than O(m+H(S)) of Algorithm 3. However
Algorithm 3 and the single source algorithm in [8] are not incompatible. We
can run Algorithm 3 on the reduced graph obtained through the 1-dominator
decomposition. Then the time will become O(m + H(S′)), where H(S′) is the
entropy defined by the algorithm run on the reduced graph.

7 Remaining work for the MST problem

Let G = (V, E) be an undirected graph with edge cost function c(u, v) for the
edge (u, v). Let Kruskal’s algorithm continue to work for the minimum (cost)
spanning tree (MST) problem after the problem has been solved partially by the
same algorithm. We estimate how much more time is needed to complete the
work by using the concept of entropy. Let G1 = (V1, E1), ..., Gk = (Vk, Ek) be
subgraphs of G such that V1, ..., Vk form a decomposition of V and Gi is the
induced sub-graph from Vi. We assume the MST problem has been solved for
Gi with spanning trees Ti for i = 1, ..., k. The state of data S(V) is defined by
S(V) = (V1, ..., Vk), and the entropy of the state is defined by (2) where Xi is
interpreted as Vi.

The remaining work is to keep merging two trees by connecting them by
the best possible edge. We use array name to keep track of names of trees to
which vertices belong. If the two end points of an edge have different names, it
connects distinct trees successfully. Otherwise it would form a cycle, not desirable
situation, resulting in skipping the edge. The following algorithm completes the
work from line 4.

Algorithm 4 {To complete the MST problem}
1 Let the sorted edge list L has been partially scanned
2 Minimum spanning trees for G1, ..., Gk have been obtained
3 Let name[v] = i for v ∈ Vi have been set for i = 1, ..., k
4 while k > 1 do begin

5 Remove the first edge (u, v) from L
6 if u and v belong to different subtrees T1 and T2 (without loss of generality)
7 then begin

8 Connect T1 and T2 by (u, v);
9 Change the names of the nodes in the smaller tree to that of the larger tree;

10 k := k − 1;
11 end

12 end.

The analysis is similar to the proof of Lemma 2. We first analyze the time
for name changes at line 9. Let ti and ai be the actual time and amortized time
for the i-th operation that merges T1 and T2, where |T1| = n1 and |T2| = n2 and
V1 and V2 are the sets of vertices corresponding to those spanning sub-trees. We
measure the time by the number of name changes. Let the state of data after
the i-th merge be Si. The change of entropy occurs only with n1 and n2. Thus
the decrease of entropy is

∆H(Si) = n1 log(n/n1) + n2 log(n/n2) − (n1 + n2) log(n/(n1 + n2))
= n1 log(1 + n2/n1) + n2 log(1 + n1/n2) ≥ min{n1, n2}

Noting that ti = min{n1, n2}, amortized time becomes

ai = ti − ∆H(Si) ≤ 0

The rest of work is bounded by O(m). Thus the total time for the remaining
work becomes O(m + H(S)), where H(S) is the initial entropy at the beginning
of line 4. Note that the condition for ai ≤ 0 is crucial. In the analysis of minimal
merge sort, it is satisfied by the fact that the two shortest ascending runs are
merged, whereas in the MST problem in this section, it is satisfied by merging
the smaller tree to the larger tree.

8 Concluding Remarks

We captured computation as a process of reducing entropy, starting from some
positive value and ending in zero. The amortized time for a step of the com-
putation is the sum of the actual time minus the reduction of entropy. If the
analysis of a single amortized time is easier than the analysis of the total actual
time, this method by entropy will be useful for analysis. We showed that three
specific problems of sorting, shortest paths and minimum spanning trees can be
analyzed by this unified entropy analysis.

If the computation process is a merging process of two sets in the decompo-
sition, our method may be used. The definition of entropy and actual time needs
care depending on the specifics of each problem. It remains to be seen if more
difficult problems can be analyzed by this method.
Acknowledgment The author gratefully acknowledges many constructive com-
ments given by the reviewers. This work was partially done at Kansai University.

References

1. Abuaiadh, D. and J.H. Kingston, Are Fibonacci heaps optimal? ISAAC’94, LNCS
834, pp. 442–450 (1994)

2. Dijkstra, E.W., A note on two problems in connection with graphs, Numer. Math.
Vol. 1, pp. 269–271 (1959)

3. V. Estivill-Castro and D. Wood, A survey of adaptive sorting algorithms,
ACM Computing Surveys 24, 441–476 (1992)

4. Fredman, M.L. and R.E. Tarjan, Fibonacci heaps and their use in improved net-
work optimization problems, JACM, Vol. 34, No. 3, 596–615 (1987)

5. D. E. Knuth, “The Art of Computer Programming, Vol.3, Sorting and Searching,”
Addison-Wesley, Reading, Mass. (1974)

6. H. Mannila, Measures of presortedness and optimal sorting algorithms, IEEE

Trans. Comput. C-34, 318–325 (1985)
7. Y. Nakagawa, A Difficulty Estimation Method for Multidimensional Nonlinear 0-

1 Knapsack Problem Using Entropy, Transactions of the Institute of Electronics,
Communication and Information, Vol. J87-A, No. 3, 406–408 (2004)

8. S. Saunders and T. Takaoka, Solving shortest paths efficiently on nearly acyclic
directed graphs, Theoretical Computer Science, 370(1-3), 94-109 (2007)

9. T. Takaoka, Theory of 2-3 Heaps, Discrete Applied Math, Vol. 126, 115-128 (2003)
10. T. Takaoka, Entropy – Measure of Disorder, Proc. CATS (Computation: Aus-

tralasian Theory Symposium), 77-85 (1998)
11. Tarjan, R.E., Data Structures and Network Algorithms, Regional Conference Series

in Applied math. 44 (1983)

