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Abstract: ITSs for ill-defined domains have attracted a lot of attention recently, 
which is well-deserved, as such ITSs are hard to develop. The first step towards 
such ITSs is reaching a wide agreement about the terminology used in the area. 
In this paper, we discuss the two important dimensions of ill-definedness: the 
domain and the instructional task. By the domain we assume declarative domain 
knowledge, or the domain theory, while the instructional task is the task the 
student is learning, in terms of problem-solving skills. It is possible to have a 
well-defined domain and still have ill-defined instructional tasks in the same 
domain. We look deeper at the features of ill-defined tasks, which all contribute 
to their ill/well defined nature. The paper discusses model-tracing and constraint-
based modeling, in terms of their suitability for ill-defined tasks and domains.
We show that constraint-based modeling can be used in both well- and ill-
defined domains, and illustrate our conclusion using several instructional tasks. 

Introduction

Recently there has been a lot of attention on supporting learning in ill-defined domains
(aka ill-structured domains), as evidenced by the three workshops held in 2006-8 [1-3]. 
This attention is welcome, as ITSs for such domains are rare, and usually much more 
demanding than the typical ITSs for well-defined domains. However, there has been 
little agreement about the terminology used and the underlying definitions between 
researchers working in this area, even among those who presented their work at the
workshops. Most researchers equate ill-defined domains with ill-defined tasks [1-3]. In
this paper, we argue that it is important to make the distinction between instructional 
domains and tasks. We start by discussing instructional domains and tasks as two 
important dimensions in the light of ITSs. Section 2 presents a deeper discussion of
instructional tasks, focusing on various factors which influence the nature of the task. 
We then turn to student modeling approaches which are appropriate for various 
instructional situations, and then show how ITSs can deal with ill-definedness.

1. A deeper look at ill-definedness: the two dimensions

An instructional domain is an area of study, such as mathematics or philosophy. In 
order to learn a particular instructional domain, the student needs to learn the relevant 
declarative knowledge (i.e. the domain theory), and in many domains also needs to 



acquire problem-solving skills. ITSs are almost exclusively problem-solving 
environments, based on the assumption that students have learnt the declarative 
knowledge from direct instruction (lectures, books and/or peers) and only need to 
practice their problem-solving skills [4, 5]. Most ITSs provide lots of  problem-solving 
opportunities and only occasionally give direct instruction, in the form of examples or 
definitions of the concepts used as in [6]. There are also ITSs that provide instructional 
material in addition to problem-solving support, such as ELM-ART [7], but in this 
paper we will focus on problem-solving as the main instructional activity.

It is important to make a clear distinction between those two types of learning 
(acquiring declarative knowledge versus problem-solving skills) for the discussion of 
ill-definedness. We found a lot of confusion in published papers when discussing ill-
definedness. Most researchers equate ill-definedness with the underlying domain 
theory, and provide examples of ill-defined domains, such as essay writing. Commonly 
used examples of well-defined domains are mathematics and physics. However, there 
seems to be no differentiation between the characteristics of domains versus tasks.

We propose that two orthogonal dimensions need to be considered when 
discussing ill-definedness: the domain, and the task. Starting from our first dimension, 
domains vary in terms of their underlying domain theories. There are many domains 
covered by ITSs that are completely well-defined, such as many areas of mathematics, 
physics and chemistry. Instructional tasks that they teach are also well-defined: for 
example, adding fractions, solving equations for unknowns, or balancing chemical 
equations. The student is taught the theory, as well as the procedure (i.e. the algorithm) 
to use to solve problems. Such domains are in the WDWT quadrant in Figure 1.

However, if the domain is well-defined, that does not necessarily mean that 
instructional tasks in that domain will also be well-defined. As an illustration, let us 
focus on the domain of database design [8]. Conceptual database design is a task of 
converting the database requirements into a high-level description of the database, most 
often expressed in terms of the Entity-Relationship (ER) data model [8]. On the other 
hand, logical database design is a process of converting the ER diagram into a 
relational schema, thus requiring an understanding of the relational data model. Both 
the ER and relational data models are well-defined: they consist of a small number of 
components with well-defined syntax and semantics. Although the ER model itself is 
well-defined, the task of developing an ER schema for a particular database (i.e. 
conceptual database design) itself is ill-defined: the initial state (i.e. the set of 
requirements) is usually underspecified and ambiguous, there is no algorithm to use to 
come up with the solution, and finally the goal state is also underspecified, as there is 
no simple way of evaluating the solution for correctness. Therefore, conceptual 
database design belongs to the WDIT quadrant in Figure 1. Logical database design, 
however, is well-defined, as there is a simple deterministic algorithm which guarantees 
good solutions (shown in the WDWT quadrant in Figure 1). Other examples for the 
WDIT quadrant include programming and writing SQL queries: although the relevant 
languages are well-defined, the task of converting the problem statement into a 
program is ill-defined.

Many domains are ill-defined, such as essay writing. In that case, the declarative 
knowledge is incomplete: it specifies how to structure the essay, how to present 
arguments, and also defines writing styles. The domain theory in this case is ill-
defined, as is the task itself (writing the essay), as illustrated in the IDIT quadrant in 
Figure 1. The two dimensions are continuous; there is a spectrum arranging domains 
from ill- to well-defined ones, as well as another spectrum for instructional tasks. There 



are some dependencies between them, as ill-defined domains usually involve ill-
defined  tasks, but the contrary is not necessarily so. Note that there are no examples 
for the IDWT quadrant: here the domain theory is ill-defined, but the task is well-
defined. We believe this combination is not possible, and do not consider it further.
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Figure 1. The space of instructional domains and tasks

2. Classifying instructional tasks: important characteristics

When discussing the definedness of decision-making tasks, there are four important 
factors to consider [9, 10]: start state, goal state, and the transformations (i.e. the 
problem-solving procedure), as well as the decision maker’s familiarity with each of 
the factors. Decision making is similar to problem solving, and for that reason we adopt 
those factors. In addition, we add another one: the existence of a correct solution.

The initial state is presented to the student in the form of a problem statement. 
Instructional tasks taught to younger students most often have well-specified problems 
statements – e.g. simple arithmetic tasks, equation solving and other tasks in science. 
Problem statements for more challenging tasks can be less specified: in a typical 
university-level mechanics problem, the text of the problem does not specify all the 
forces acting on a given body. In conceptual database design or software design, the 
student is given a set of requirements, which is often incomplete and/or ambiguous. To 
deal with such problems, the student needs to use not only declarative domain 
knowledge they learnt previously, but also his/her world knowledge in order to 



eliminate ambiguities and (when necessary) add missing information. Therefore, in 
order to deal will ill-defined problem statements, the student has to process the given 
information in order to complete the specification (and therefore turn the problem 
statement into a well-defined one).

Goal states can also be well- or ill-defined. In easy tasks, the student is clear about 
the form of the final solution. For example, the student had learnt that there were two 
solutions for a quadratic equation before attempting to solve any equations. When 
adding two fractions, the student knows that the solution should be (in the general case) 
another fraction. Additionally, the student can easily check whether the solution is 
correct or not. However, in design tasks, there is little information about the goal state. 
The goal state in such tasks is defined in a very abstract way; for example, in database
design the goal state is defined as an ER diagram that is syntactically correct and 
matches the given requirements. Therefore, there is no simple test to use to check for 
correctness; the student can only apply the declarative knowledge he/she possesses in 
order to evaluate the solution produced. Another important issue is whether there is a 
stopping criterion – how can the student tell whether he/she is finished solving the 
problem? A well-defined goal possesses a stopping criterion which is easy to apply, 
while the ill-defined ones do not, and the student is again left to apply the constraints 
from the declarative knowledge in order to evaluate the solution.

Transformations or the problem solving procedure is another important factor. 
Some instructional tasks have a well-defined algorithm to apply to the initial state to 
derive the goal state. We have previously mentioned several tasks from mathematics, 
physics or chemistry with well-defined algorithms. In such situations, the student task 
is (relatively) easy: the student needs to memorize the algorithm and apply it correctly. 
Other similar examples involve some engineering tasks involving calculations. 
However, there is a very important subclass of tasks that deal with design. Design is in 
general ill-defined, as there are no algorithms to use to transform the initial state into 
the goal state. In addition, the start state is underspecified, and the goal state defined in 
terms of highly abstract features. Design tasks typically involve huge domain expertise, 
and large, highly structured solutions [11]. Typical examples of design tasks include 
architecture, software design, mechanical engineering and music composition. In such 
tasks there may be heuristic rules that can guide the student, but in general the student 
needs to apply the constraints from the domain theory. The other possible mechanism 
is analogy: the student can compare the current problem to those previously solved and 
perform analogical reasoning to deal with the complexity. 

Finally, some researchers believe that ill-defined tasks are those that have no 
correct solution, but rather a family of solutions which can all be deemed correct. This 
is true of the extreme cases, such as essay writing: there might be any number of very 
good essays on a specified topic. In design tasks, there are often several (or even many) 
solutions that are all equally good. However, in a teaching situation, the teacher often 
has a good pedagogical reason for preferring one particular solution over the others. 
For example, in SQL there are often several correct queries for the same problem, 
differing from each other in the constructs used (please note that there is a lot of 
redundancy in SQL and, therefore, multiple ways of satisfying the same requirements). 
Even in such a task, the teacher may prefer one of those solutions among others; for 
example, the teacher may want to illustrate the use of a particular predicate. Therefore, 
it is still possible to nominate one “ideal” solution without compromising the quality of 
the whole ITS, as long as the ITS is capable of identifying other alternative solutions 
students may come up with as correct. 



Table 1 presents the two dimensions and the factors of instructional tasks, and 
presents a few examples, categorized with respect to the factors discussed.

Table 1. Some examples of instructional tasks and their domains

Instructional task Domain Problem 
specification
(initial state)

Goal 
specification
(goal state)

Problem-
solving 
procedure

Correct 
solution

Fraction addition Well-defined Well-defined Well-defined Well-defined Only one
Balancing chemical 
equations

Well-defined Well-defined Well-defined Well-defined Only one

SQL queries Well-defined Ambiguous/
incomplete

Abstract None Multiple

Software design Well-defined Ambiguous/
incomplete

Abstract None Multiple

Essay writing Ill-defined Abstract Abstract None Multiple
Legal argumentation Ill-defined Abstract Abstract None Multiple
Intercultural
competence

Ill-defined Abstract Abstract None Multiple

3. Student modeling approaches and ill-definedness

Another important issue is how the ITS models the student. Model tracing [4] is the 
most widely used student modeling approach currently. Since it tracks student’s 
progress by generating solutions step-by-step, this approach is suited to well-defined 
tasks. Developing model-tracing tutors for ill-structured tasks is much harder, as it is
difficult to come up with problem solvers for such tasks [1-3, 12]. However, constraint-
based tutors do not suffer from such difficulties. Within the Intelligent Computer 
Tutoring Group (ICTG), we have developed constraint-based tutors for many tasks, 
both well- and ill-defined. Examples of our tutors teaching well-defined tasks range 
from fraction addition and balancing chemical equations to data normalization in 
relational databases [5]. We have also been very successful in developing ITSs for ill-
defined, design tasks. SQL-Tutor [13] is our first ITS that teaches students how to 
formulate queries in SQL. The typical problem statement specifies the type of data the 
query is to return, and is often ambiguous. The student needs to understand the 
database structure and the data that is stored in the database, as well as the relational 
data model and the SQL constructs. The transformation for the problem statement into 
an SQL query is underspecified; the students are taught search strategies on examples, 
and need to be able to use analogies with previously solved queries to solve new ones, 
as well as to use the SQL syntax. EER-Tutor [5] (the early version of which was known
as KERMIT [14]) teaches conceptual database design, the task previously discussed in 
section 1. COLLECT-UML is another ITS that teaches a design task, this time object-
oriented software design using UML class diagrams [15]. In addition to teaching UML 
class diagrams, COLLECT-UML also teaches collaboration skills.

Our tutors are based on Constraint-Based Modeling (CBM), a domain and student 
modeling approach that represents domain knowledge as a set of constraints on correct 
solutions [16]. Constraints capture both syntax and semantics of a domain, and are very 
computationally efficient. In our previous work, we have argued that CBM is ideally 
suited to teaching ill-defined tasks [12]. Constraint-based tutors do not require the 
problem solver, as they can evaluate the student’s solution by comparing it to a solution 
pre-specified by a teacher. As discussed previously, it is not unrealistic to expect the 



teacher to specify one preferred solution for design tasks, as such a solution is 
motivated pedagogically. Therefore our tutors check the semantics of the student’s 
solution by comparing it to the pre-specified ideal solution. At the same time, they are 
capable of identifying alternative solutions as correct, as constraints check for 
equivalent ways of solving the problem.

Goel and Pirolli [17] argue that design problems by their very nature are not 
amenable to rule-based solutions (as in model tracing). On the other hand, constraints 
are extremely suitable for representing design solutions: they are declarative, non-
directional, and can describe partial or incomplete solutions. A constraint set specifies 
all conditions that have to be simultaneously satisfied without restricting how they are 
satisfied. Therefore, the ITS performs the same process the student needs to perform in 
order to evaluate his/her solution – apply domain constraints to it.

4. How can ITSs support learning in IDIT?

We argue that CBM is suitable for use in both well- and ill-defined domains/tasks. We 
have discussed examples of constraint-based tutoring systems that work in the two 
quadrants in Figure 1 corresponding to well-defined domains (WDWT and WDIT), 
with well- or ill-defined tasks. Can CBM also be used in the IDIT quadrant?

To answer this question, let us discuss an example instructional task that belongs 
to this quadrant. Walker et al. [18] describe one such situation: teaching intercultural 
competence, a task in which the student needs to explain observed cultural behaviour. 
This is an ill-structured task, as the start/end goals are ill-defined, there is no algorithm 
to use to solve the problem, and additionally there is no stopping criterion. The domain 
theory is also ill-defined; certain norms and rules are known about a culture involved, 
but there are many exceptions to them and also personal differences make the whole 
process very hard. Model tracing cannot be used in this case, as it is hard (or maybe 
even impossible) to come up with the cognitive model of the task. In [18], whatever is 
known about the domain is captured in terms of five dimensions: the student’s 
discussion needs to be on topic, must be based on provided facts, needs to contain 
multiple perspectives and a good argument for the claims and observations. The fifth 
dimension allows the student to also provide novel facts to support their argument, 
which have not been provided in the case. Walker et al. assess student’s discussion by 
comparing it to the model of a good discussion – in essence this model is an “ideal” 
solution. Since the domain and the task are both ill-defined, it is impossible to specify 
the ideal solution completely; in such situations, the ideal solution consist of mandatory
elements, and other elements are optional, and depend on the personal preference. 

Walker et al. [18] effectively do what constraint-based tutors do: they created a 
mechanism for comparing the student’s solution to the ideal solution provided by the 
teacher. They also provide feedback to the student, saying what is good in his/her 
discussion, and suggesting how to improve. CBM can be applied in this case: the 
constraint set would consist of the syntax restrictions that must be satisfied, and the 
semantic constraints would check that the solution is consistent with the given problem. 
This implies another possible design for constraint-based tutors: the one in which the 
ideal solution would be replaced with a formal specification of problem requirements. 

Another illustration is the domain of legal reasoning, as done in LARGO [19]. In 
this system, the student needs to develop a diagram reflecting the legal case. This 
diagram is then compared to the expert’s solution, and feedback is provided about 



wrong or missing elements. Architectural design also belongs to this group. If the task 
is to design a house with three bedrooms for a given piece of land which needs to be 
eco-friendly and energy efficient, there can be a set of designs which satisfy the
minimal requirements. Constraints that need to be satisfied involve the problem 
specification and the norms for energy consumption and ecological consequences – but 
the designs will differ in terms of aesthetics and personal preferences of the designer. 
Again, the constraint set will capture the minimal requirements, and still allow for a 
variety of solutions. Therefore, in ill-defined domains the student has the freedom to 
include solution components to make the solution aesthetically pleasing or more to 
their preferences, and the ITS will still accept it as a good solution for the problem. It is 
also possible to have weights attached to constraints, with highest weights being
assigned to mandatory constraints, and lower weights assigned to constraints that need 
not necessarily be satisfied as they correspond to optional elements.

In IDIT, more attention needs to be devoted to the feedback provided to the 
student. In well-defined domains, feedback generation is straightforward: the student 
violates some constraints, and feedback on violated domain principles is provided. In 
model-tracing tutors, buggy production rules provide feedback on errors, and hints can 
be generated on the next step the student is to take. However, in ill-defined domains, 
the declarative knowledge is incomplete: the constraint set consists of a set of 
mandatory principles and some heuristics. Therefore, the feedback mechanism needs to 
be sophisticated, so that feedback does not confuse the student. Walker et al. [18] 
provide suggestions to the student, based on prioritized dimensions they identified, 
which is in essence similar to the mechanism we use to select a tutorial dialogue in 
KERMIT [20]. If the solution is a partial one, feedback becomes even more crucial, as 
the ITS should discuss only the issues the student has worked on so far. 

Ill-defined domains and tasks are very complex, and therefore, ITSs need to 
scaffold learning, by providing as much information as possible without making it 
trivial. The common ITS techniques can also be used in ill-defined domains (e.g. 
visualizing goal structure and reducing the working memory load [13], providing 
declarative knowledge in the form of dictionaries or on-demand help [6, 7], etc). 
Furthermore, the ITS can simplify the process by performing one part of the task for 
the student automatically [21] or by restricting the actions students can take [4]. 
Furthermore, solution evaluation can be replaced with presenting consequences of 
student actions [22] or supporting a related, but simpler task, e.g. peer review [23].

5. Conclusions

This paper proposes two important dimensions for discussing ill-definedness, which
can be used to order the domains/tasks along a continuum, from well- to ill-defined. As 
designers of ITSs, we cannot do much about the domain definedness – it is either well-
or ill-defined (in other words, the domain theory either exists or does not exist). 
However, the features of instructional tasks are very important. We discussed the 
definedness of the initial state (i.e. the problem statement) and final, goal state (i.e. the 
form of the solution), as well as the problem-solving procedure and the number of 
alternative solutions. Instructional tasks vary on all of those four factors.

In previous work, we have shown that CBM can be used effectively to support
learning in well-defined domains, with either well- or ill-defined tasks. CBM can deal 
with ill-defined tasks, as each constraint tests a particular aspect of the solution, and 



therefore supports modularity. Incremental development is supported by being able to
request feedback at any time. Therefore, CBM can evaluate partial solutions: if a 
particular part of the solution is incomplete, the student will be informed about that.

We also show that CBM can support ill-defined domains, by discussing current 
research on such domains, and identifying similarities with constraint-based tutors. 
Constraints can capture whatever is known about the ill-defined domain and the 
problem specification, thus begin able to evaluate the mandatory parts of the solution. 
Such a tutor can provide feedback to student, while still allowing for multiple solutions 
differing in non-essential elements, such as aesthetical and personal preferences. 
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