
AccessRank: Predicting What Users Will Do Next
Stephen Fitchett

Department of Computer Science
University of Canterbury

Christchurch, New Zealand
saf75@cosc.canterbury.ac.nz

Andy Cockburn
Department of Computer Science

University of Canterbury
Christchurch, New Zealand
andy@cosc.canterbury.ac.nz

ABSTRACT
We introduce AccessRank, an algorithm that predicts revisita-
tions and reuse in many contexts, such as file accesses, web-
site visits, window switches, and command lines. Access-
Rank uses many sources of input to generate its predictions,
including recency, frequency, temporal clustering, and time
of day. Simulations based on log records of real user interac-
tion across a diverse range of applications show that Access-
Rank more accurately predicts upcoming accesses than other
algorithms. The prediction lists generated by AccessRank are
also shown to be more stable than other algorithms that have
good predictive capability, which can be important for usabil-
ity when items are presented in lists as users can rely on their
spatial memory for target location. Finally, we present exam-
ples of how real world applications might use AccessRank.

Author Keywords
Revisitation; prediction; list stability

ACM Classification Keywords
H5.2 User Interfaces: Theory and methods

INTRODUCTION
Many forms of interaction with computer systems are repeti-
tive – we use the same commands [7], visit the same websites
[14], return to previously visited document regions [1], and
so on. To improve the efficiency of accessing previously used
items, many diverse interactive techniques and systems have
been developed, with examples including command histories
[8], web page recency lists [9], scrollbar marks showing pre-
vious areas of document use [1], and menu adaptations that
emphasise probable upcoming selections [4, 5, 2].

While there are plentiful examples of research and commer-
cial systems that provide support for retrieving previously
used data, there is much less on the design and evaluation
of the underlying algorithms that support the predictions pre-
sented to users (examples of relevant algorithmic work are
presented in the paper). Improving the performance of these
algorithms would have a strong impact on many areas of
interaction. For example, Firefox’s AwesomeBar uses the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI’12, May 5–10, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

‘Places Frecency’ algorithm [12] to populate recommenda-
tions in a drop-down list alongside its URL bar, and member-
ship of this list is progressively pruned and presented to users
as they type characters, allowing predicted items to be rapidly
selected.

This paper first describes several predictive algorithms from
diverse areas of computer science that can be used to predict
upcoming user actions. We then explain the key objectives
for this type of algorithm – to predict accurately, and to pro-
vide stability so that users can anticipate where items will
be located in interfaces that provide access to the algorithm’s
predictions. We explain how AccessRank combines two pre-
vious algorithms and adds new components to incorporate
time of day information and to enhance stability. Then, we
compare AccessRank’s performance with that of many pre-
existing algorithms by running simulations using three sets
of log-file data extracted from real user activities: command
use, web navigation, and window switching. Finally, we dis-
cuss issues with deploying AccessRank in real interfaces.

PREVIOUS WORK
Several areas of work influence our research, including gen-
eral information retrieval, recommender systems, search, and
caching algorithms. For brevity, we focus on summarising
the algorithms that can be adapted for predicting upcoming
actions based on previous actions, as follows:

Most Recently Used (MRU) and Most Frequently Used
(MFU) calculate ranks based solely on recency or frequency,
respectively. Split Recency and Frequency (SR&F) [4] select
n items with MRU, then the rest with MFU.

Combined Recency and Frequency (CRF) [10], used origi-
nally for cache management, considers every past access of
an item. It is calculated by Equation 1, where wf is the item’s
weighting, n is the number of past accesses, t is the current
time and ti is the time of access i (where time is in terms of
discrete events). In our testing p = 2 and λ = 0.1 performed
best.

wf =
n∑
i=1

1
p

λ(t−ti)
(1)

The Adaptive algorithm filters menus in software such as Mi-
crosoft Office 2000 [2]. Item counts are incremented when
selected and decremented after multiple sessions of disuse.

The Places Frecency algorithm (PF) [12] is used in Firefox to
order URL suggestions when typing a web address. The last
ten accesses of each item are placed in time-based buckets
with different weights based on recency. Other factors, such

as the method of website access, are also incorporated but can
be stripped out for general purpose use.

A Markov chain [11] can be used to make predictions, where

P (Xn+1 = x|Xn = xn) =
|xn → x|
|xn|

(2)

Here, |xn| is the number of previous occurrences of state xn,
and |xn → x| is the number of previous transitions from state
xn to x. Xi represents the state at time i. Given the most re-
cent access xn, the calculated probabilities provide a ranking,
and MRU can be used to break ties.

ACCESSRANK
AccessRank goals are twofold: first, to accurately predict the
next action based on past ones; and second, to maximise list
stability. The importance of prediction accuracy is obvious,
but the need for stability is also important because it allows
users to learn item locations over time, facilitating expertise
with the interface used for list presentation [3].

AccessRank has three components, described below: Access-
Rank Score, which combines the stability of CRF with the
accuracy of Markov; Time Weighting, which weights items
based on the current time and day; and Switching Threshold,
which improves stability. Computing AccessRank is fast, as
its model can be updated in O(1) time, all scores can be up-
dated inO(n) time, and predictions made inO(n log n) time.

AccessRank Score. A raw AccessRank score wn is calculated
for each previously accessed item using Equation 3. wmn is
the Markov weight, wcrfn is the CRF weight with p = 2 and
λ = 0.1 and wt is a time weighting. The parameter α > 0
can be adjusted based on whether accuracy or stability is more
important and determines the blend between the Markov and
CRF algorithms.

wn = wmn
αwcrfn

1
αwtn (3)

The Markov weight is altered to always give non-zero
weights:

wmn =
|xn → x|+ 1
|xn|+ 1

(4)

Time Weighting. The time weightingwtn gives higher weight-
ing to items that have historically been more frequently ac-
cessed at the current time of day or day of week. From in-
formal observations, we have observed that many aspects of
interaction are temporally predictable, for example habitually
accessing a news webpage on arrival at work. Let ch be the
current hour of the day. For item n, let h be the ratio of
the number of previous accesses of n in hours in the range
[ch − 1, ch + 1] compared to the average number of previous
accesses of n for a three hour slot. Similarly, let d be the ratio
of the number of previous accesses of n on the current day of
the week to the average across all days of the week. h and
d are set to one if fewer than 10 accesses in total have oc-
curred in the corresponding slot. The time weighting is then
calculated as in equation 5.

wtn = max(0.8,min(1.25, hd))0.25 (5)

Switching Threshold. The switching threshold improves sta-
bility. Consider items A and B at positions rA < rB in the
previous prediction list. Pairwise comparisons between item
weights are made during sorting to generate a new predic-
tion list. If A and B are compared and their new weights
wA and wB are such that wB > wA, then B will only be
ranked higher than A if wB > wA + δ, where δ ≥ 0 is an
AccessRank parameter. An item k not in the previous list is
assumed to have rk = ∞. This comparison is not transitive,
however it is deterministic with a given sorting algorithm. In
our implementation we used merge sort.

LOG-BASED ANALYSIS OF ALGORITHM PERFORMANCE
We compared performance of these algorithms by analysing
their predictive capability and stability for each successive ac-
tion by each of many users recorded in several log datasets.
The log datasets were collected from previously published
studies conducted by other researchers, summarised in Ta-
ble 1. Revisitation rates in the datasets ranged from 26% for
URLs (from [14]) to 93% for commands (from [6]).

Study Participants Duration
Window switching [13] 25 3 weeks
Web browsing [14] 28 (experienced) 5-6 weeks
Command line use [6] 168 (4 exp. levels) 4 months

Table 1: Log datasets used in our analysis.

The log files were first converted to a standardised format,
consisting of a series of Visit, Addition and, in some domains,
Removal events. Then, simulations were run over each file,
with each algorithm generating a prediction list prior to each
Visit event, and the other events used to update the set of pos-
sible items to revisit. The prediction list was then compared
with the actual logged Visit event. Stability was also continu-
ally calculated.

For the window switching logs, only user generated switches
sustained for more than a second were considered, and we
processed the raw logs as both window and application
switching. We process the web browsing logs with full URLs
and with domains only, where consecutive accesses on the
same domain were collated into one visit. The command-line
logs were processed as logs of full command lines, and as
logs of just the first command from each line.

Measures
We used two types of measures to assess the algorithms’ per-
formance: accuracy measures, which assess prediction ac-
curacy; and stability measures, which assess prediction lists
variability over time.

Accuracy Measures. These include the Average Rank of re-
visitations in prediction lists, and the percentage of correct
predictions (Percentage Revisitations Predicted). We also
analyse how the latter is affected by accepting matches in
the top k predicted items rather than just the top item, and
by providing fixed length typed prefix ‘hints’ of a series of
characters to the algorithm, which is common in interfaces
such as Firefox’s AwesomeBar: for example, cnn.com might
become the first recommendation after typing ‘c’.

Stability Measures. In their analysis of stability measures,
Webber et. al [15] state that stability measures can be cate-
gorised based on two main properties: whether they are un-
weighted or top-weighted, and whether they require conjoint
rankings. Weightedness refers to measures that give greater
importance to items at certain ranks (e.g., items near the top
of the list). Conjointness refers to whether or not two lists
contain the same items (regardless of order): they are con-
joint when membership is the same, and non-conjoint other-
wise. We are most interested in top-weighted non-conjoint
measures, as people tend to look at the top of a list, and the
set of items being ranked changes over time.

We consider three stability measures: Average overlap (AO)
and rank-biased overlap (RBO) (both described in [15]), and
Learnability [3]. AO and RBO are both top-weighted non-
conjoint measures. If comparing just the top k items of each
list, AO is non-convergent as k → ∞. RBO addresses this
and can extrapolate accurately when using suggested values
of k = 50 and p = 0.9 to calculate an extrapolated point
estimate of list similarity, RBOEXT . Learnability [3], is es-
timated as “one minus the average distance that items move
as a proportion of half of the total menu length”. While this
is non-weighted, we used k = 10, focusing list comparisons
on the most important items. Items that were in only one list
were treated as having moved half the total menu length.

For all stability measures, we calculated the average similar-
ity score across comparisons of every pair of consecutive lists
for each log-algorithm pairing in the simulation.

Analysis Summary
The log-based analysis investigates performance by compar-
ing the algorithms’ predictions before each activity with the
actual activity recorded in the logs. Several measures of pre-
diction accuracy (e.g., percentage of first predictions, average
position of the action in the prediction ranked list, etc.) and of
stability are analysed. The factors under study are as follows:

Algorithm ∈ {MRU, MRF, Adaptive+MRU, PF, SR&F (n =
5), CRF (λ = 0.1), and six AccessRank varia-
tions (λ = 0.8 and 1.65, δ = 0, 0.2 and 0.5)}

Log dataset ∈ {window switching, application switching, web
URLs, web domains, Unix command lines, Unix
commands}

Results
AccessRank (λ = 1.65, δ = 0) has the highest Percentage
Revisitations Predicted score with 41% overall (top in four
datasets and second in one). All AccessRank configurations
with δ = 0 or 0.2 performed best. It also had the lowest av-
erage rank of 10.3 (lowest in four domains and second lowest
in the other two), followed by Markov (10.7).

Relatively short prediction lists contain most revisitations.
Figure 1 shows this for three datasets that incorporate all log
data and illustrates both AccessRank’s best and worst case
accuracy. While AccessRank and Markov generally perform
best, there is variation between domains – Markov performs
best for web pages; AccessRank for Unix commands.

We also analysed how the algorithms perform when user-
typed ‘hints’ are given (Figure 2). Normally, just a few char-

!"#
$"#
%!"#
%$"#
&!"#
&$"#
'!"#
'$"#
(!"#
($"#
$!"#

!"#$%&"'(%
)**+,,-./0#1%23$4#!5# 6.7089# :-;#1!2%5# 6-<#

%# $# =# %'# %># &%# &$#
</?@#:8AA./B,#

%# $# =# %'# %># &%# &$#
C+D#E78F,?/G#

!"#
%!"#
&!"#
'!"#
(!"#
$!"#
3!"#
>!"#
H!"#
=!"#
%!!"#

%# &# '# (# $#

)
*+
(%
,-
%.
"/

(%
0$
(/

%01
23
45

(5
%

C?/B8F#IF?J*K?/G#

Figure 1: Percentage of revisitations that are included in a prediction list
of a given size, across three datasets.

!"#
$"#
%!"#
%$"#
&!"#
&$"#
'!"#
'$"#
(!"#
($"#
$!"#

!"#$%&"'(%
)**+,,-./0#1%23$4#!5# 6.7089# :-;#1!2%5# 6-<#

!"#
%!"#
&!"#
'!"#
(!"#
$!"#
3!"#
=!"#
>!"#
?!"#

%!!"#

!# %# &# '# (#

)
*+
(%
,-
%.
"/

(%
0$
(/

%"1
%.
,2

%3
4(
56
%

@A/B8C#DCAE*FA/G#
!# %# &# '# (#
</AH#:8II./B,#

!# %# &# '# (#
@+J#K78C,A/G#

Figure 2: Percentage of revisitations that are the top match when filtered
by a prefix of a given size, across three datasets.

acters will identify the target as the top prediction. Web
browsing logs, however, often require more, in order to de-
termine which page within a domain is targeted.

The three stability measures (AO, RBO and Learnability) pro-
duced very similar results. MFU was the most stable algo-
rithm, followed by Places Frecency, with Markov least stable.
AccessRank stability improved significantly with δ.

An ideal algorithm will give accurate predictions and high
stability. Figure 3 graphs Stability (using Learnability, which
is the most applicable to HCI and had no strong bias) against
Average Rank and Percentage Revisitations Predicted. The
latter is especially important as the top result is most useful
– interfaces provide rapid ‘press to confirm’ access for such
items. AccessRank performs best in this important category,
but it also matches the best algorithms in both accuracy and
stability. Both graphs illustrate the flexibility of AccessRank,
in that it can be tailored to optimise either accuracy or stabil-
ity as required, while still outperforming other algorithms.

DISCUSSION AND FUTURE WORK
AccessRank is a flexible algorithm that outperforms existing
algorithms in a variety of contexts. Based on our results,
we recommend (λ, δ) values of (1.65, 0.2) to give the best

!"#$!"#%&$!"#%'$
()*+,$-./0,1)*23$ -44+335678$9:"#%;<$ -44+335678$9:"=%>'<$ -44+335678$9:"&%'<$

#%?$

#%@$

#%'$

#%>$

#%A$

#%;$

#%B$

=$

=#$ =&$ =@$ =>$

!"
#$

%&%
"'
()&
*#
+,
#$

%&%
"'
(-

*#
./
+*
0(

12*+#3*(4#,5(

Markov!

MRU!
SR&F!CRF!

MFU!PF!

='C$ &'C$?'C$ @'C$
4*2%.%"#67,.(8+*9%:"*9(

Markov!

CRF!MRU!

SR&F!
MFU!

Adaptive!
PF!

Figure 3: Learnability vs Average Rank and Percentage Revisitations
Predicted over all datasets. Lower average ranks are better, while a
higher percentage of revisitations predicted is better.

compromise between accuracy and stability. When stability
is unimportant, values of (1.65, 0) give the best top predic-
tion accuracy, while (2.5, 0) may be better if the average rank
is the primary goal. When stability is particularly important,
high values for both parameters can be used, e.g. (2.5, 0.5).

AccessRank could be incorporated in interfaces for any do-
main containing patterns of reuse. For example, a file browser
could use an AwesomeBar-like interface that suggests files
based on filename portions, eliminating the need to traverse
hierarchies. A separate section could display the top weighted
items in the file hierarchy subtree rooted at the current loca-
tion. Window switching interfaces could highlight windows
that are more likely to be acquired, to help users find relevant
windows without confusing them by ordering items unpre-
dictably. Many other domains could also benefit.

While AccessRank is a powerful algorithm, there are still im-
provements that could be made. The time weighting is based
exclusively on the absolute time, but might be more effective
if, for example, events were considered relative to the com-
puter’s first use each day. Location awareness could be in-
corporated; for example, if a user is in range of their work
wireless network, accessed items will differ from when in
range of their home network. Furthermore, while Access-
Rank is domain-independent, domain specific improvements
could further improve its performance; for example, for file
browsing past access methods could be considered (such as
browsing, search or Open Recent menus), as could the inter-
action between hints and path components.

CONCLUSIONS
We have described AccessRank, a customisable revisitation
prediction algorithm that is more accurate than existing al-
gorithms while also producing stable results. Performance
simulations over a range of datasets confirm its applicability
in a wide variety of contexts, and demonstrate that different
parameters can be used to tailor AccessRank to specific situ-
ations and design goals. In ongoing and further work, we will
deploy the AccessRank algorithm in a range of applications
and empirically assess its performance.

ACKNOWLEDGEMENTS
We thank Susanne Tak and Saul Greenberg for providing the
log data used in our study. This work was partially funded by
Royal Society of New Zealand Marsden Grant 10-UOC-020.

REFERENCES
1. Alexander, J., Cockburn, A., Fitchett, S., Gutwin, C.,

and Greenberg, S. Revisiting read wear: analysis,
design, and evaluation of a footprints scrollbar. In Proc.
CHI ’09 (2009), 1665–1674.

2. Arcuri, M., Coon, T., Johnson, J., Manning, A., and van
Tilburg, M. Adaptive menus, Sept. 19 2000. US Patent
6,121,968.

3. Cockburn, A., Gutwin, C., and Greenberg, S. A
predictive model of menu performance. In Proc CHI ’07
(2007), 627–636.

4. Findlater, L., and McGrenere, J. A comparison of static,
adaptive, and adaptable menus. In Proc. CHI ’04 (2004),
89–96.

5. Findlater, L., Moffatt, K., McGrenere, J., and Dawson, J.
Ephemeral adaptation: the use of gradual onset to
improve menu selection performance. In CHI ’09, ACM
(2009), 1655–1664.

6. Greenberg, S. Using unix: Collected traces of 168 users.
Tech. rep., Research Report 88/333/45, Department of
Computer Science, University of Calgary, 1988.

7. Greenberg, S., and Witten, I. Supporting command
reuse: empirical foundations and principles.
International Journal of Man-Machine Studies 39, 3
(1993), 353–390.

8. Greenberg, S., and Witten, I. Supporting command
reuse: Mechanisms for reuse. International Journal of
Man-Machine Studies 39, 3 (1993), 391–425.

9. Kaasten, S., and Greenberg, S. Integrating back, history
and bookmarks in web browsers. In Proc. CHI ’01
(2001), 379–380.

10. Lee, D., Choi, J., Kim, J.-H., Noh, S. H., Min, S. L.,
Cho, Y., and Kim, C. S. On the existence of a spectrum
of policies that subsumes the least recently used (lru)
and least frequently used (lfu) policies. SIGMETRICS
Perform. Eval. Rev. 27, 1 (1999), 134–143.

11. Markov, A. The theory of algorithms. American
Mathematical Society Translations (1960).

12. Mozilla. The Places frecency algorithm.
https://developer.mozilla.org/en/The_
Places_frecency_algorithm, 2008.

13. Tak, S. Understanding and Supporting Window
Switching. PhD thesis, University of Canterbury, 2011.

14. Tauscher, L., and Greenberg, S. How people revisit web
pages: empirical findings and implications for the design
of history systems. IJHCS 47 (1997), 97–138.

15. Webber, W., Moffat, A., and Zobel, J. A similarity
measure for indefinite rankings. TOIS ’10 (2010).

https://developer.mozilla.org/en/The_Places_frecency_algorithm
https://developer.mozilla.org/en/The_Places_frecency_algorithm

	Introduction
	Previous Work
	AccessRank
	Log-Based Analysis of Algorithm Performance
	Measures
	Analysis Summary

	Results

	Discussion and Future Work
	Conclusions
	Acknowledgements
	REFERENCES

