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Abstract

Accurately assessing bone fracture healing requires years of specialty training assessing
radiographs which thereafter can still result in an incorrect diagnosis. Providing an ability to
track and predict bone strength over time would allow for physicians to better assess patient
recovery time. Our overall problem can be broken down into three sub-problems: determining
what activity is occurring at a given time, analysing changes to that activity in subsequent
occurrences, and correlating those changes with a biomechanical model. This research project
presents activity recognition methods to address sub-problem one and identifies the time series
extrinsic regression model to address sub-problem two. A time series forest model is compared
with a convolutional neural network for activity recognition, with the time series forest model
achieving an average leave one out cross validation accuracy of 85.7% on an interpolated dataset.
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1 Introduction

Accurately assessing bone fracture healing requires years of specialty training assessing radiographs
which thereafter can still result in an incorrect diagnosis. Improving the quality of data provided
to a physician would allow for more accurate assessment of a fracture [1]. Furthermore, providing
an ability to track and predict bone strength over time would allow physicians to better assess
patient recovery time resulting in either a decrease in recovery time or if healing is not occurring,
it allows the physician to do an intervention. Our overall problem can be broken down into three
sub-problems: determining what activity is occurring at a given time, analysing changes to that
activity in subsequent occurrences, and correlating those changes with a biomechanical model.

Each sub-problem, while related, requires individual methods to solve. Sub-problem 1 is to
determine what activity is occurring at a given time. The data generated from the novel sensor
is time-series strain data, therefore, traditional time series classification (TSC) models have been
investigated and compared with a novel neural network architecture. The models implemented were
trained to classify the activity occurring based on a fixed-length strain sensor signal.

Sub-problem 2 is to analyse changes in subsequent occurrences of the activity. Again, the data
generated is time-series strain data, however, the learning task is different. Where TSC-based
methods were used for sub-problem 1, time series regression-based methods are required for sub-
problem 2. Analysing changes in subsequent activity occurrences is a task that requires learning
a mapping between functional data and an external value, therefore we investigate time series
regression and time series extrinsic regression methods in relation to sub-problem 2.

Sub-problem 3 is to correlate the activity changes found in sub-problem 2 with a biomechanical
model of healing. This is crucial to effectively providing an overall solution. Recent bone healing
models have been investigated to gain a deeper understanding of how to structure a pipeline that
goes from strain sensor output to a value that quantifies the level of healing that has occurred.

This report is structured as follows. In Section 2, we review relevant literature and background
concepts required for each of the three sub-problems. In Section 3 we discuss the prior work of
the wider project. Section 4 describes the method used for sub-problem identification. Section 5
discusses sub-problem one. Section 6 discusses sub-problem two. Section 7 summarises the results
and future work is discussed in Section 8.
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2 Background and Related Work

2.1 Human Activity Recognition

Human activity recognition (HAR) is a popular topic within computer vision. HAR aims to rec-
ognize and classify the activities of one or more agents from a series of observations on the agents’
actions. It has many applications in a variety of fields, such as human-computer interaction, video
surveillance systems and healthcare monitoring systems [2, 3]. Most research has been targeted
towards classifying human activity using camera and video.

Recently, there have been a number of studies that aim to classify human activities based solely
on sensor output [4, 5]. These studies used convolutional neural networks (CNNs) to classify time
series data obtained from a sensor that was either embedded in a transtibial prosthetic or carried
by the subject. In [4], they develop a novel locomotion mode recognition model based on a one-
dimensional signal from a strain gauge sensor in the subjects transtibial prosthetic. The CNN they
developed was trained on raw data from the sensor which shows that CNNs have the capacity to
extract relevant features from a raw signal. In [5], they use a triaxial smartphone accelerometer
to gather data from subjects undergoing a particular activity. The three-dimensional acceleration
data was transformed into vector magnitude data and then used as input to a 1D-CNN. In [6],
they use a CNN to analyse vibroarthrographic signals obtained from a dataset published by [7]. In
model construction, they convert the one-dimensional signals into two-dimensional image data in
the form of spectrograms.

2.2 Time Series Data

Before discussing the methods available to analyse time series data, we introduce two formal defi-
nitions for univariate and multivariate time series data.

Definition 1: A univariate time series X = [x1, x2, . . . , xT ] is an ordered set of real values.
The length of X is equal to the number of real values T.

Definition 2: A multivariate time series (MTS) X = [X1, X2, . . . ., XM ] is a set of M different
univariate time series Xi ∈ RT .

There has been much research into working with time series data for both classification and
forecasting tasks [8]. On the other hand, time series regression (TSR) has not received as much
attention [9]. Recently, a subset of TSR, known as time series extrinsic regression (TSER), has been
presented [citation]. In the following subsections we review the time series classification (TSC) task
and the TSER task.

2.2.1 Time Series Classification

TSC remains a challenging problem within data science today. Increases in temporal data availabil-
ity and the ever-growing applications of TSC have led to hundreds of algorithms being proposed in
recent years [8]. A popular approach to TSC has been to use a nearest neighbour (NN) classifier
along with a distance function. Dynamic time warping (DTW) has been shown to be a strong
distance measure when used with a NN classifier [8]. Ensemble methods using NN classifiers with
different distance functions have also been shown to outperform all of the ensemble’s individual
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components [10]. This has led to recent contributions focusing on developing ensemble methods
that significantly outperform NN with DTW. A new ensemble method called COTE (Collective
Of Transformation-based Ensembles) was developed in [11]. It uses an ensemble of 35 different
classifiers over different time series representations. This was extended to use a Hierarchical Voting
system to become HIVE-COTE which was a significant improvement over COTE [12]. HIVE-COTE
uses a probabilistic voting system with two additional classifiers and two additional representation
transformation domains [13]. An issue with HIVE-COTE is it becomes computationally intensive
when being used on a real big data mining problem [13]. Until recently, HIVE-COTE was the
state-of-the-art method for the TSC task.

In 2020, Dempster et al. proposed the Random convolution kernel transform (Rocket) classifier
which achieves state-of-the-art accuracy with less computational expense than existing methods
[14]. Rocket uses a large number of convolution kernels to transform the time series and trains a
ridge regression classifier. These kernels have random parameters, such as weights and length and,
when applied to a time series produce a feature map. For each feature map, the maximum value and
the proportion of positive values are computed. This gives two features per kernel which combined
with the default 10,000 kernels produces 20,000 features of the input time series. Rocket achieves
state-of-the-art performance when benchmarked on the 85 TSC datasets [15] and has been shown to
be more accurate than both HIVE-COTE and InceptionTime [16]. Although Rocket was designed
for classification tasks, it can be adapted to regression tasks by exchanging the ridge regression
classifier with a ridge regression model.

2.2.2 Time Series Extrinsic Regression

Time Series Extrinsic Regression (TSER) is a task that aims to predict numeric values which are
dependent on the entire time series [9]. This differs slightly from time series forecasting (TSF) in
which the goal is to predict future values in the sequence. An example of TSF would be stock price
prediction based on the previous stock prices. TSF usually assumes that the most recent values
in the series are more closely related to future values than distant past values. This is a point of
difference between TSER and TSF. TSER is closely related to TSC with the main difference being
that TSC predicts a categorical class label and TSER predicts a continuous scalar value [9].

TSER could be considered an example of scalar-on-function regression (SoFR). This is part of
a widely studied topic within statistics called functional regression [17]. Functional regression can
be split into three categories: 1) scalar responses with functional predictors (SoFR); 2) functional
responses with scalar predictors (function-on-scalar regression); and 3) functional responses on
functional predictors (function-on-function regression). In the case of TSER, the functional data
are the time series, where the values present are a function of time. Representing the time series
data in its functional form allows SoFR to apply a basis function, such as a Wavelet or Fourier
Transform, to reduce noise in the data. A regression model is then fitted to the smoothed data to
predict a scalar value.

Examples of TSER in the machine learning community are sparse. However, there have been a
number of specialized applications using photoplethysmogram (PPG) sensors. One such application
aims to predict heart rate (HR) from the PPG sensor signal [18]. Similar to [6] for HAR, the methods
rely on spectral analysis. [18] shows that these methods are not very accurate and proposes a new
CNN-based approach that is significantly more accurate compared to the existing spectral methods.
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Figure 1: Deep learning framework for time series classification [13]

2.2.3 Deep Learning for Time Series Data

Deep Neural Network (DNN) architectures have seen many successful applications in recent years.
CNNs have revolutionised computer vision, with some architectures reaching human-level perfor-
mance in image recognition tasks [13]. There have also been several DNN architectures proposed
for solving natural language processing (NLP) tasks such as learning word embeddings [19] and
document classification [20, 21]. The sequential nature of data within NLP tasks provides a link
with the TSC task and shows promise towards DNN methods being successful in TSC.

Deep neural networks are designed to learn a hierarchical representation of the input data. In
the case of time series data, this is an ordered set of real values. A dataset is then a collection of
(X, Y) pairs where Y is the label for the corresponding time series X. Figure 1 shows a general deep
learning framework for the TSC task. DNNs consist of a collection of layers which in turn consist
of neurons. Each layer takes as input the previous layer’s output and applies a non-linear function
to compute its own output. A set of parameters, called weights, are used to control the behaviour
of the non-linear transforms. These weights then link the previous layer’s output to the current
layer’s input. This process is referred to as feed-forward propagation.

A training dataset is used to learn the values of the weight parameters used by the network.
The dataset is composed of a number of known input-output examples which allows the network to
make a prediction based on the input and then evaluate its prediction against the known output.
The prediction is evaluated using a cost function that computes the prediction error. Gradient
descent is then used to update the weights in a backward pass over the network. This process is
known as backpropagation.

A forward pass followed by backpropagation allows the network to update its weights such that
the cost function is minimized. Repeating this process allows the network to learn a mapping
through different representations of the input data to the output. The network is then tested on
unseen data (usually referred to as the test set). A forward pass is performed on unseen input
followed by a prediction. Performance of the model can then be measured using a metric such as
accuracy. Testing on unseen data allows the developer to investigate how generalizable the model
is.
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2.2.4 Convolutional Neural Networks

Recent successes in different domains such as image recognition and NLP have provided new mo-
tivations for applying CNN architectures to time series data [13]. A CNN can be used for either a
classification or regression problem. A CNN works by applying a sliding filter, called a convolution,
to the time series. The filter applies a generic non-linear transformation to the data. An example
would be to set the filter values equal to [ ½ , ½ ] and convolve this with the time series to obtain a
moving average with a sliding window of length 2. The result of such a convolution on a time series
X can be considered as another time series C that underwent a filtering process. Applying several
of these filters across a time series allows the network to learn multiple discriminative features of
the time series.

A powerful property of CNNs is weight sharing. It allows the CNN to learn filters that are
invariant across the time dimension. Filters are learned automatically by applying the convolution
operation followed by a discriminative classifier or regression function.

The discriminative classifier or regression function is usually preceded by a pooling operation.
Pooling operations can be either local or global. Local pooling operations such as average or max
pooling take an input time series and applying an aggregation over a sliding window of the data.
The result from such a pooling operation reduces the length of the time series by a fixed amount
that is dependent on the stride and window size. Stride is the distance to move the window before
applying the next pooling operation. Global pooling operations aggregate over the entire time
dimension resulting in a scalar value.

To produce the prediction from the network a final discriminative layer is used. It takes as
input a representation of the time series, which is the result of the convolutions, and returns either
a probability distribution over the class labels (classification) or a scalar value (regression). This is
usually accomplished using the softmax activation function for classification or a linear activation
for regression.

2.2.5 Deep Learning algorithms for TSC and TSER

Deep learning models are capable of predicting both discrete labels (classification) and continuous
values (regression). Fundamentally, the output of a neural network is a continuous value. To make
this into a discrete output for classification tasks, an activation function, such as softmax, is used
to compute the class probabilities, the highest of which is the network’s class prediction. The loss
function must also be changed when moving from a regression to a classification problem. For
classification, the categorical cross entropy loss function may be used, but for regression this may
be replaced by either the mean squared error or the mean absolute error.

Much of the algorithms that have been successful in the TSC task are able to be adapted to
perform a regression task. In [13], they compared several neural network-based algorithms and found
that Residual Networks (ResNet) were the best univariate time series model when benchmarked
on the 85 univariate time series datasets [15]. Fully Convolutional Networks were found to be
the most accurate deep learning model when tested on 12 multivariate time series datasets [22]
and the second most accurate when using univariate time series data. In [9], they statistically
compare and evaluate several algorithms (both classical regression and deep learning based) on the
TSER task. They found that there is no statistical significance between the state-of-the-art time
series algorithms and classical regression algorithms. They also ranked the algorithms based on the
relative root mean squared error (RMSE). The results from this comparison showed that Rocket
performed best overall with the lowest average RSME ranks followed by the other state-of-the-
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Figure 2: Biological phases of healing; inflammation, reparative, and remodelling. [23]

art algorithms. Their results showed that SoFR algorithms are also competitive as they are not
statistically significant from the classical regression algorithms.

2.3 Modelling Bone Fracture Healing

Bone fracture healing is a physiologically complex process that involves both biological and me-
chanical aspects. Over the past decade, bone healing simulation and modelling have been used to
better understand the mechanisms involved [23]. This has led to new methodologies of bone heal-
ing simulation such as conceptual modelling, biological modelling and mechanobiological modelling.
The following subsections provide brief details of these model types as well as covering the different
stages involved in fracture healing from both a biological and biomechanical perspective.

2.3.1 Biological phases of fracture healing

There are three biological phases of bone fracture healing: the inflammatory phase; the reparative
phase; and the remodelling phase. Figure 2 shows the biological phases of healing. Each phase
serves a distinct purpose during healing. The inflammatory phase is characterised by swelling and
pain at the injury site. A haematoma (blood clot) is formed which immobilizes the fracture and
acts as a scaffold for the inflammatory cells to begin the healing process. This process is similar to
other biological cascades, where subsequent steps are predicated on previous steps [23].

The reparative phase of bone fracture healing begins approximately one week after the forma-
tion of the haematoma. Initially, a soft callus of woven bone is formed by a type of bone cell
called osteoblasts found in bone marrow. This initial callus is called the provisional callus, and as
calcification proceeds, it increases in rigidity to form the bony callus. It takes approximately one
to two weeks for the osteoblasts to produce enough woven bone to reach its full-size. Calcification
of the bony callus continues until bony fusion is achieved, with the new bony callus always being
greater in cross-sectional area than the original bone [23].

The increase in cross-sectional area of the bone during the reparative phase results in a less
mechanically efficient structure. The remodelling phase uses modelling and remodelling processes
to restore the bones to their original shape and size whilst maintaining overall strength, therefore
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optimising mechanical efficiency.
Sufficient mechanical strength occurs after the woven bone callus has formed but before final

calcification and determining when the bone is “fused enough” is the subject of this research project.

2.3.2 Biomechanical stages of fracture healing

Mechanical factors such as strain, pressure, stability, and fluid velocity are important parameters
which act as stimuli for tissue formation during bone healing [23]. A standard way to study fracture
healing has been to mechanically test in the lab the healing bone in bending and in torsion and
compare it with the stiffness of intact bone [24].

In 1977, White et al. defined four biomechanical stages of healing [25]. Stage I is characterized
by seeing no stiffness across the bone, and failure occurs through the original fracture line. This
stage corresponds to the inflammatory and the early reparative phases of healing. For Stage II,
substantial stiffness is encountered; however, the original fracture still remains as the failure point.
Stage II corresponds to the middle of the reparative phase when a bony callus has formed but has
not become as large or calcified as it will become. During Stage III, there is no further increase in
stiffness, but the failure point is now partially through the fracture site and partially through intact
bone. In Stage IV, failure occurs through the intact bone instead of the callus at the fracture site.
Stages III and IV correspond to the late reparative and early remodelling phases.

2.3.3 Model types

Researchers have developed various models to describe bone healing, including conceptual, biolog-
ical, and mechanobiological. These are described in further detail below.

2.3.4 Conceptual/Mechanical

Conceptual models such as, [26] describe the healing process in terms of bone-forming and bone-
resorbing processes. Another, [27] describes the process solely in terms of strain. These models
are best used for gaining a deeper understanding of bone healing processes. Conceptual models
provide approximations of the temporal aspect of healing by using mathematical models based on
parameters in a conceptual model. For example, when analysing the healing response in terms of
strain, as in [27], the healing response can be seen as a mathematical function of strain dependent
on time. These simple models are crucial to formulating and understanding the healing process.
This research project uses conceptual models to gather data.

2.3.5 Biological

Biological models use systems of partial differential equations (PDEs) to describe the change in
concentration and density of bone cells. These models focus on the cellular activity of the healing
bone and the growth factors that regulate these activities. PDE-based biological models focus on
the evolution of bone healing biology but neglect mechanical factors, causing them to be poor for
explaining mechanical issues such as the effect the rate of loading has on healing. However, they
are useful for understanding cellular changes during bone healing.
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2.3.6 Mechanobiological

Mechanobiological modelling processes start from the initial phase of healing at the fracture site
and consider both mechanical and biological properties. Finite element analysis (FEA) is used
to calculate mechanical parameters such as stress, strain, pressure, and fluid velocity around the
fracture site. These parameters are then used to simulate the biological processes by solving the
PDEs corresponding to the biological processes of interest. Different values of mechanical loading
and deformation lead to different tissue types being formed. By allowing tissue formation to occur
through updating of the tissue type based on conditions, material properties and geometry are
revised in each iteration and used for calculations in the subsequent step. This type of fracture
healing modelling is highly informative, but computationally expensive. Developing a model of this
type would allow simulated data to be generated which could then be used to develop a machine
learning bone fracture healing model. Our project has access to an FEA model of a sheep spine
with a signal input that simulates gait.

2.3.7 Sheep Gait Analysis

Sheep gait is a promising avenue to analyse different forms of bone strengthening. Recent studies [28,
29, 30] have shown that analysing gait in sheep can provide valuable insight into the strengthening
process of the observed bone. Furthermore, gait analysis is a widely studied topic for many animals
[30] which gives rise to the possibility of using this project’s novel sensor in other animals. Our
research uses sheep gait analysis for two reasons: 1) Dr Munro’s spinal fusion research uses sheep
as a model due to their anatomical similarities to humans [31]; therefore, our available gait data is
entirely sheep-based; and 2) the simulated finite element analysis (FEA) model is a reconstructed
3-dimensional scan of a sheep spine. Gaining deeper insight into sheep gait will be a valuable
resource for aiding the design and calibration of future simulations and will thereafter result in an
improved machine learning-based bone fracture healing model.

Analysing sheep gait is a useful tool for monitoring bone healing and general bone health [30].
Features are able to be extracted using various gait analysis techniques which characterise bone
healing, such as peak vertical force [28]. These features are highly informative about the amount of
healing that has occurred, and in one particular study, the level of union was subsequently confirmed
using radiographs [32]. They investigated the dependence of gait conditions on the amount of callus
formation during bone transport with an external bone fixation device attached. Six merino sheep
were used in two groups: 3 in the control group, and 3 in the distraction group. Gait parameters
were recorded using a force plate that the sheep were guided over. The sheep were monitored
approximately weekly from surgery to one-year-post surgery by recording the ground reaction force
(GRF) against time as the sheep walked over the force plate. The results showed that, as healing
occurs, the gait parameters exponentially converge towards the values of healthy sheep, and that
the walking profile of a healthy sheep differs significantly from that of one carrying an injury.
Furthermore, a statistical model was able to be fitted that correlated force data to healing progress.

Sheep gait analysis has also been used to identify differences between healthy sheep and ones that
have sustained a spinal cord (SC) injury [33]. The researchers analysed the gait of 17 healthy sheep
and one injured sheep walking on a treadmill. A 3D model of the gait was created using infrared
reflective markers on the sheep and 6 cameras to monitor the space they moved in. Parameters
such as angular motion and velocities of the hock joint were extracted from the model. The 3D
kinematics of the limbs were extracted over the gait cycle and values were compared pre- and post-
operatively. The results showed that meaningful features related to bone healing could be extracted

10



from analysis of sheep gait. Results such as these will help others gain a more detailed understanding
useful for defining new measures of bone healing and applying these to other applications.

Other methods for analysing sheep gait include recording force-based parameters from either
a pressure-sensitive walkway or a force plate [30, 33] or using accelerometers placed at different
locations on a sheep and analysing the stance and swing phase duration of the gait cycle [34]. In
[29], peak vertical force (PVF) was recorded for 21 clinically healthy sheep that were directed to
walk over a pressure sensitive walkway. The sheep were divided into three groups based on age,
G1, G2, and G3, for younger to older sheep respectively. A significant difference in the recorded
force was found between groups G1 and G3, in both the forelimbs and hindlimbs. This showed that
young healthy sheep differed from older sheep in the vertical forces they exerted when walking.

Accelerometer data has also been used to discriminate between sound and simulated lame gait
movement in sheep [34]. Lameness was simulated by restricting the front right leg of the sheep using
a bandage. Triaxial accelerometer data was collected through the use of collar, leg, and ear–attached
accelerometers. The data was partitioned into 10-second mutually exclusive behaviour windows and
then input to a quadratic discriminant analysis (QDA) model. The final classification model was
trained to classify five activities: sound walking, sound grazing, sound lying, sound standing, and
lame walking. The ear-attached accelerometer achieved the best accuracy of 82%, concluding that
a tri-axial accelerometer attached to the ear-tag of a sheep could successfully discriminate between
sound and lame activities in sheep.

3 Prior Work

A novel microelectronic strain gauge sensor has been developed by Dr Deborah Munro and her team
in UC’s mechanical engineering department [31]. Initially the sensor was designed to determine the
strength and stability of a posterolateral spinal fusion in an in vitro sheep model. The sensor was
attached to a titanium rod that was surgically implanted at the fusion site and then simulated
healing was performed using a compound known as bone cement (polymethylmethacrylate). It was
hypothesised that the strength of the healing bone would be directly correlated to the strain across
the titanium rod. The results showed that there is a correlation between strain and spinal fusion
as well as promise to develop a computer algorithm to track and predict bone fracture healing.

SENG402 Project 20 began developing the computer algorithm hypothesised above [35]. The
algorithm developed was aimed at classifying activities based solely on the novel strain sensor data
stream. The strain data that was used in the project was gathered from a drill press set up that
aimed to simulate moments generated by sheep movement such as walking. Initially, fourteen
activities were to be simulated and then classified by the algorithm. This number of activities was
determined to be excessive and was reduced to six activities in the subsequent trials. The data
recorded from the sensor are strain measurements as a function of time. This allowed methods from
Time Series Classification (TSC) and Human Activity Recognition (HAR) to be used to classify
the activities contained within the time series.

A Time Series Forest (TSF) classifier was implemented using Scikit-Learn’s Sktime library. TSF
was then used to classify the different activities being simulated. The activities simulated were: 1)
Resting with no strain; 2) Crouching; 3) Standing with normal strain; 4) Standing with heavy strain;
5) Walking with slow stride; 6) Walking with fast stride. Leave-one-out cross-validation (LOOCV)
was used to assess the model. It involved leaving one instance from training data as validation and
predicting with all permutations of the data. TSF achieved a LOOCV average accuracy of 0.809.
A k-nearest neighbours (kNN) method was also used which achieved a LOOCV average accuracy
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Figure 3: Hypothesised general data pipeline.

of 0.857. kNN achieved a higher accuracy than TSF, however, it was not investigated further, and
the reason is unknown. The results showed that it is possible to classify different activities based
on a strain signal obtained from the novel sensor developed by Dr Munro.

Project 20 was almost entirely focused on the first sub problem: activity classification. Project
20 was limited by its dependence on the quality of the protocol and physical experimentation. Since
the data was gathered from an experimental set up, it was not possible to prove that the protocol
directly matched an in vivo scenario. The implementation of the models using Sktime did not allow
for the easy addition of neural network-based models, such as CNNs. Another limitation of Project
20 was the data pre-processing stage. The data that was obtained from the drill press set up had
varying length between instances. Although this is natural due to some activities running longer
than others , it was an issue for the models that were implemented. TSF, for example, requires
all the time series data to be of equal length. Linear interpolation was used to handle the unequal
length data. However, this transformation alters the time scale of the data, effectively removing its
impact.

4 Method

The data output by the novel microelectronic strain sensor is univariate time series with strain as the
response. A goal for the wider project is to wirelessly record data from the sensor that is implanted
in a sheep spinal fusion as it walks over a pressure sensitive walkway. Sheep are notoriously hard
to handle and require training to be directed down the walkway [30]. This may result in the sheep
standing still on the walkway before walking over sporadically. Therefore, it is expected that when
sheep move over the walkway the strain data recorded will contain multiple activities and these
activities will require segmentation to accurately predict the stability of the healing bone. This
gives us our first sub-problem: to determine the activity occurring at a given time. Determining
the activity occurring is a crucial step in the data pipeline as it allows for subsequent occurrences
of the same activity to be identified, which is necessary for a solution to sub-problem 2.

The sheep will be directed down the walkway approximately once per month until the spinal
fusion reaches maturity. The data generated is now a multivariate time series (MTS) with strain as
the response (Sub-problem 2 in Figure 3). It is hypothesised that, as the fusion matures, the strain
output will decrease. Sub-problem 2 is to analyse changes in subsequent occurrences of an activity.
Although the data is still time series based, the target value has changed. Where for sub-problem
1 the target was a label, here the target is an external continuous value, more specifically, it is a
numerical value for the level of calcification that has occurred. This makes time series extrinsic
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regression (TSER) models ideal for this sub-problem. In Dr Munros initial study, bone cement was
used to simulate healing of a posterolateral spinal fusion in an in vitro sheep model. This gave
ground truth labels for the amount of calcification that had occurred. Data of this type is required
for sufficiently training a TSER model to address sub-problem 2.

Correlating the changes found by the TSER model with a biomechanical model of bone fracture
healing is the focus of sub-problem 3. This sub-problem is beyond the scope of this project, however,
is relevant to understanding what other models in the pipeline are required to produce. For example,
this helped in the identification of TSER models as a possible solution to sub-problem 2. Figure 3
shows a hypothesised general data pipeline and where each sub-problem fits within.

4.1 Sub-problem one analysis

Sub-problem one is determining the activity occurring as the sheep is directed down the walkway.
Since the novel strain sensor generates time series data and an activity is a discrete label, we have a
time series classification (TSC) problem. An application of the TSC task is human activity recog-
nition (HAR). The HAR task is to recognise and classify the activities of one or more agents from
a series of observations on the agents’ actions. While sub-problem one is focused on determining
the activity occurring for a sheep, the methods used in HAR have provided valuable insight into
developing models to address sub-problem one.

The data recorded from the novel sensor combined with a discrete label makes sub-problem
one fundamentally a TSC task. After reviewing the literature surrounding the TSC task, HAR
and, deep learning architectures for TSC, it was determined to proceed forward by reimplementing
the traditional models used in Project 20 and comparing these with a novel neural network-based
architecture.

4.2 Sub-problem two analysis

The sheep will be directed down the walkway approximately once per month until the spinal fusion
reaches maturity. Therefore, each month a new activity profile will be generated. Upon successful
recognition of the activities occurring in the profile, changes in subsequent occurrences of the same
activity are to be analysed. This is the goal of sub-problem 2: to analyse changes in subsequent
occurrences of the same activity. Specifically, the task is to map a multivariate time series input
to an external continuous value for the level of healing that has occurred. Predicting a continuous
target value based on a time series input is the goal of the time series regression (TSR) task.

The TSR task is similar to the TSC task with the main difference being that the target value is
continuous in the TSR task. An example of the TSR task is time series forecasting (TSF) in which
the goal is to predict the next value in the series. Where the TSF task predicts future values in the
time series, sub-problem 2 is aiming to predict a value external to the input series. Recently, Tan et
al. introduced the time series extrinsic regression (TSER) task: predicting an external continuous
value that is dependent on the entire input time series [9]. This leads to the investigation of the
TSER task and how it can be applied to sub-problem 2.
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5 Sub-problem one: Determining the activity

5.1 Introduction

Sub-problem one is focused on determining the activity occurring as the sheep moves over the
walkway based solely on the strain sensor output. This is a time series classification (TSC) task.
There have been many methods proposed for the TSC task, for example k-nearest neighbours
coupled with a distance function has been shown to be a strong TSC method [8]. Recently, neural
network-based models, such as Residual networks (ResNet) [13] or Fully Convolutional Networks
(FCNs) [22] have been used for the TSC task.

An application of the TSC task is human activity recognition (HAR). The HAR task is to
recognise and classify the activities of one or more agents from a series of observations on the
agents’ actions. While sub-problem one is focused on determining the activity occurring for a
sheep, the methods used in HAR have provided valuable insight into developing models to address
sub-problem one. Project 20 began exploring traditional statistical models for this task. A time
series forest (TSF) model was implemented and evaluated on a simulated activity dataset. During
the project, other models, such as k-nearest neighbours and shapelet transform were explored, but
not included in the final analysis. Recently, neural network architectures have been used for HAR
[4, 5]. In 2019, Feng et al. proposed a one-dimensional convolutional neural network for classifying
locomotion mode in amputee patients [4]. Their results showed that convolutional neural networks
have the ability to extract relevant feature information from strain gauge data. Project 20 began
implementation of the traditional statistical models, here we reimplement the TSF model and a
further two statistical models and compare these with a neural network-based model.

5.2 Prior work data collection

Project 20 simulated 3 – 5 instances of fourteen activities that were considered typical for a sheep
using a drill press setup. The data collection procedure aimed to simulate moments generated
by sheep movement such as walking. Initially, fourteen activities were to be simulated and then
classified by the algorithm. In Project 20, this number of activities was determined to be excessive
and was reduced to six activities in the subsequent trials, however, here we use the full set of
fourteen activities. For an exact protocol description, please refer to the appendix in Project 20’s
final report [35]. The data recorded from the sensor are strain measurements as a function of time.

5.3 Data interpolation

During pre-processing in Project 20, interpolation is used to ensure all the time series are of equal
length. While this is used elsewhere in the time series analysis [4], it is limited by its obfuscation
of the timescale when creating equal length time series. Linear interpolation estimates the values
in between known values by fitting a linear line between the two known values. This gives a new
estimated value between two known time points, at a fictitious time point. The addition of the
estimated value alters the time scale, and therefore how the models interpret the data. For example,
one model used was Nearest Neighbours with Dynamic Time Warping, which is largely unaffected
by the altered time scale as the distance measure it uses transforms the time scale. However, the
Time Series Forest (TSF) model is affected by the interpolation of the data as the time scale is
a feature that it can use. Furthermore, one aim of this project is to extend on the work done in
Project 20 by comparing the traditional models with novel neural network architectures such as
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Figure 4: Comparison of the simulated walking activity profile and the window extracted.

a CNN. Any data augmentation, such as linear interpolation, prior to being input to the network
may cause the network to recognise the augmentation as a feature instead of true features in the
data.

5.4 Data segmentation

To reduce the protocols dependence on interpolation, data segmentation methods were investigated.
Segmenting the data into activity specific windows of a fixed size gives equal length data without
modification of the time scale. This also allows each window to be of a specific activity instead
of a transition period which, in future, could allow for a model to segment the entire data stream
recorded from the sensor into mutually exclusive activity windows. Segmenting the data used in
Project 20 will also give the developed models more data to train on. For example, instead of
interpolating one 20-second-long walking activity profile, it can be broken up into four 5 second
mutually exclusive windows each with an instance of the walking activity profile.

Using the fourteen activities and data from Project 20, a set of window data, W, was created
based on the following requirements:

1. Equal time for each activity and;

2. The returned window contains useful activity profile information.

The first three instances of each activity were used in the creation of W, the same as the LOOCV
procedure. Initially, an automated window creation method was attempted, however, this did not
produce segmented data that met the requirements. Instead, a manual approach was used. The
first instance of each activity was plotted and inspected for when the activity profile began and
finished and compared with the data generation protocol described in Project 20. The lead in and
lead out sections of the data were removed, leaving only the window that corresponds to an activity.
From these windows approximately 10 seconds of data was extracted. Figure 4 shows the before
and after window extraction for a walking activity.
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5.5 Model development

The models discussed in this section are specifically addressing sub-problem 1: to determine the
activity occurring based on a strain signal recorded from the novel sensor. Project 20 began
developing traditional statistics models to address this problem. Here, we extend on the traditional
models and investigate a one-dimensional convolutional neural network using the same dataset as in
Project 20 and the window dataset described above. The traditional models will first be described,
followed by the convolutional neural network.

5.5.1 Traditional Models

Project 20 investigated three statistical models: Time Series Forest (TSF), Shapelet Transform
(ST), and k-Nearest Neighbour with Dynamic time warping (kNN-DTW), however, only results for
the TSF model were presented. The TSF and kNN-DTW were retrained for comparison with the
CNN model, but the ST model was not due to its computational complexity. Where the TSF and
kNN-DTW models trained in seconds, the ST model took minutes. kNN-DTW finds the distance
between the train data and the test data. The k training instances which are closest to the test
data are selected, and the most frequent class is returned as the prediction. TSF is a feature-based
classifier that extracts features from intervals of each time series and then trains a classifier based
on these features. The model performs a prediction using a majority ensemble voting method. TSF
is competitive against 1NN-DTW and has computational complexity that is linear in the length of
the time series, making it a promising candidate method.

5.5.2 Convolutional Neural Network

In addition to the traditional models implemented in Project 20, a CNN was developed for com-
parison. Recent studies in human activity recognition have implemented one dimensional CNN
(1D-CNN) architectures that were able to extract meaningful features of the data [4]. The CNNs
implemented are designed for processing signal-based data, usually in the form of accelerometer
data [5]. Other studies have analysed time series data by first converting to a spectrogram using
frequency analysis [2].

The data generated from the novel sensor is signal-based data and, therefore, CNN architectures
are a promising starting point for exploring and comparing neural networks to the traditional models
evaluated in Project 20. CNNs were designed for being trained with image data with each image
having a height, width, and depth (number of channels). However, the strain sensor data is signal-
based data and, therefore, cannot be directly input to a CNN. A one-dimensional CNN architecture
was adapted from Feng et al. for analysing the strain sensor data [4]. A toy 1D-CNN model was
first developed to extend the data pipeline implementation from Project 20 to work with CNN-
based models. The toy 1D-CNN was not developed further, nor compared against the traditional
models. The architecture developed by Feng et al. was used to classify the locomotion mode of an
amputee patient based on output from a strain sensor implanted in a transtibial prosthetic [4]. The
strain signal was recorded as the patient walked through a predefined circuit. The model developed
by Feng et al. was successful in extracting features from raw interpolated strain sensor data and,
therefore, was deemed promising for recognising activities from the novel strain sensor.
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5.5.3 CNN architecture and implementation

The 1D-CNNs implemented here are simplified versions of the model developed by Feng et al.
Since the window dataset and the interpolated dataset have different lengths, two versions of the
1D-CNN were implemented. The window version, Window-CNN, added two initial layers to the
architecture used by Feng at al. to handle the increased length of the window data. The filters of
each convolution layer were updated, and the final fully connected layer (layer 12 in table 1) was
removed to decrease training time and reduce overfitting. The interpolated version, Interp-CNN, is
the same as the Window-CNN without the first two layers. The filters and fully connected layers are
the same as for Window-CNN. For both the Window-CNN and Interp-CNN, the Rectified Linear
Unit (Relu) activation functions were used for both the convolutional layers and the fully connected
layer. The output layer uses the softmax activation function. Details of the architecture used by
Feng et al. and the two implemented here are shown in Tables 1 - 3. Both models were implemented
in Tensorflow 2.4.1.

Layers Type Number of Neurons Convolutional kernel size Stride
0 Input layer 1000 x 1 - -
1 Convolution layer 1000 x 4 5 1
2 Max-pooling layer 200 x 4 - 5
3 Convolution layer 200 x 8 5 1
4 Max-pooling layer 40 x 8 - 5
5 Convolution layer 40 x 16 3 1
6 Max-pooling layer 20 x 16 - 2
7 Convolution layer 20 x 32 3 1
8 Max-pooling layer 10 x 32 - 2
9 Convolution layer 10 x 64 3 1
10 Max-pooling layer 5 x 64 - 2
11 Fully connected layer 320 - -
12 Fully connected layer 100 - -
13 Output layer 3 - -

Table 1: Details of the Feng et al. architecture. [13]

5.5.4 Model training and testing

Both the traditional and CNN-based models were trained using the same LOOCV as in Project 20.
The LOOCV procedure involved creating three splits of the dataset. The dataset consisted of three
instances of each of the fourteen activities giving 42 total examples. In each split, one instance of
each activity was reserved for testing while the remaining two were used for training. The three
splits ensured that each activity instance will belong to the test set once, and therefore the average
accuracy across all three test splits gives an evaluation of model performance. The CNNs used cross
entropy as the loss function, and the Adaptive Momentum Estimation (Adam) optimizer was used
for training to minimize loss. The number of epochs was 10, and the learning rate was 0.001. The
average accuracy on the 3 test splits is used to evaluate and compare the CNN models with the
traditional models.
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Layers Type Number of Neurons Convolutional kernel size Stride
0 Input layer 20000 x 1 - -
1 Convolution layer 20000 x 4 9 1
2 Max-pooling layer 5000 x 4 - 4
3 Convolution layer 5000 x 8 9 1
4 Max-pooling layer 1000 x 8 - 5
5 Convolution layer 1000 x 16 5 1
6 Max-pooling layer 200 x 16 - 5
7 Convolution layer 200 x 32 5 1
8 Max-pooling layer 40 x 32 - 5
9 Convolution layer 40 x 64 3 1
10 Max-pooling layer 20 x 64 - 2
11 Convolution layer 20 x 128 3 1
12 Max-pooling layer 10 x 128 - 2
13 Convolution layer 10 x 256 3 1
14 Fully connected layer 320 - -
15 Output layer 14 - -

Table 2: Details of the window-CNN architecture.

Layers Type Number of neurons Convolutional kernel size Stride
0 Input layer 1000 x 1 - -
1 Convolution layer 1000 x 16 5 1
2 Max-pooling layer 200 x 16 - 5
3 Convolution layer 200 x 32 5 1
4 Max-pooling layer 40 x 32 - 5
5 Convolution layer 40 x 64 3 1
6 Max-pooling layer 20 x 64 - 2
7 Convolution layer 20 x 128 3 1
8 Max-pooling layer 10 x 128 - 2
9 Convolution layer 10 x 256 3 1
10 Fully connected layer 320 - -
11 Output layer 14 - -

Table 3: Details of the Interp-CNN architecture.

5.6 Results

5.6.1 Interpolated data

The accuracy for each split and the average LOOCV accuracy for the interpolated data are shown
in table 4. The bold values indicate the best accuracy for that column. The time series forest (TSF)
model performs the best in each test split and achieves the best average LOOCV accuracy of 0.857.
In comparison, the interp-CNN achieved an average accuracy of 0.595. The TSF implemented in
Project 20 achieved an average LOOCV accuracy of 0.809, however, the better performance of the
TSF model here is due to randomization in how the TSF model is initialized. To obtain reproducible
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results, the same seed was used for all models, therefore resulting in a different accuracy between
our TSF model and Project 20’s. Project 20 also reported that a k-nearest neighbours (kNN) model
achieved an average LOOCV accuracy of 0.857, however, it was concluded that the TSF model and
the kNN model has similar accuracies and so were not investigated further. Table 4 shows a far
larger gap in the average LOOCV accuracy between TSF and kNN than was found in Project
20. This indicates that the kNN model’s success in Project 20 may have been due to a particular
initialization of the method as opposed to it successfully extracting discriminatory features from
the interpolated strain sensor data. The exact effects of model initialization have not been explored
fully here but is an important piece of future work as it will help in model comparison.

The accuracy of the interp-CNN is indicative that the model has failed to learn any meaningful
features from the interpolated dataset. A large drawback of neural network-based models is that
they typically require a large amount of data to be trained sufficiently. The dataset that interp-
CNN was trained on consisted of 28 examples out of 42 total. Furthermore, the number of output
classes was large relative to the dataset size making it hard for the network to learn discriminatory
features from the data. Given that Feng et al. was able to achieve average 5-fold cross validation
accuracies between 0.91 and 0.94 [4] on a larger dataset, it is reasonable to assume that increasing
the training dataset size for the interp-CNN would improve performance. Another possible remedy
for improving the interp-CNN model performance is to reduce the number of parameters in the
network. This can be achieved by altering the filter sizes and the number of neurons present in the
final fully connected layer.

5.6.2 Window data

The accuracy for each split and the average LOOCV accuracy for the window dataset, W, are shown
in table 5. The bold values indicate the best accuracy for that column. As for the interpolated data,
the TSF model performs the best, achieving an average LOOCV accuracy of 0.786. The window-
CNN model performs the worst of the three models, achieving an average LOOCV accuracy of
0.548. The window-CNN, like the interp-CNN, has failed to learn any meaningful features from the
data, and this is further shown by the 50% accuracy for splits two and three of the window data.
The kNN model achieves an average LOOCV accuracy of 0.69 using the window dataset. This an
increase when compared to the interpolated data.

The window-CNN has failed to extract any meaningful features from the data. The window-
CNN was a larger network than interp-CNN due to the increased length of the time series. Similar
to the interp-CNN, increasing the amount of training data available to the network would improve
performance.

Model
Accuracy per split

Average Accuracy
Split 1 Split 2 Split 3

Time Series Forest 0.857 0.929 0.786 0.857
Interp-CNN 0.643 0.571 0.571 0.595

k-Nearest Neighbours 0.571 0.571 0.571 0.571

Table 4: Accuracies, using the interpolated data, on the testing set for each dataset split and the
average accuracy. Bold indicates the best accuracy of each column.

19



Model
Accuracy per split

Average Accuracy
Split 1 Split 2 Split 3

Time Series Forest 0.786 0.923 0.643 0.786
Window-CNN 0.643 0.5 0.5 0.548

k-Nearest Neighbours 0.714 0.786 0.571 0.690

Table 5: Accuracies, using the window data, on the testing set for each dataset split and the average
accuracy. Bold indicates the best accuracy of each column.

5.6.3 Comparison of Window data models and Interpolated data models

Both the TSF and interp-CNN trained on the interpolated data outperform the TSF and window-
CNN trained on the window dataset. However, the kNN model trained on the window data out-
performed the kNN model trained on the interpolated data. TSF is the best performing model for
both datasets, however, neither of the CNN-based models were fine tuned during development.

Both models were trained for 10 epochs and used a learning rate of 0.0001. Having such a
small learning rate is likely to have impacted the model’s ability to learn features within such short
number of epochs. Furthermore, the learning rate was not altered for later layers in the network.
In the architecture proposed by Feng et al. a learning rate of 0.8 is used in the final fully connected
layer of the network [4].

6 Sub-problem two: Analysing changes

6.1 Introduction

Sub-problem two is to analyse changes in subsequent occurrences of the same activity. Sheep will be
directed down the walkway approximately once per month until the spinal fusion reaches maturity.
Therefore, an activity profile of the sheep moving through the walkway will be generated every
month, resulting in a multivariate time series (MTS). Dr Munro hypothesises that, as the fusion
matures, the strain output will decrease, indicating that the fusion is strengthening. These changes
in strain will also be present in subsequent occurrences of the same activity allowing for a model
to be constructed to predict these changes. Where for sub-problem 1 the target value is a discrete
label, the target for sub-problem 2 is an external continuous value, more specifically, it is a numerical
value for the level of calcification that has occurred at the healing site.

Predicting a continuous value from a time series input is a time series regression (TSR) task.
An important distinction to make between the TSR task and sub-problem 2 is that the target value
for sub-problem 2 is external to the time series input. Recently, Tan et al. introduced a subset
of the TSR task called time series extrinsic regression (TSER) [9]. The TSER task is to predict
an external continuous value that is dependent on the entire input time series as opposed to a
future value of the input series. This makes TSER models a promising candidate for addressing
sub-problem 2: analysing changes in subsequent occurrences of the same activity. Here the external
value being predicted is the level of calcification in the healing bone.

In Dr Munros initial study [31], bone cement was used to simulate healing of a posterolateral
spinal fusion in an in vitro sheep model. This gave ground truth labels for the amount of calcification
that had occurred. Data of this type is required for sufficiently training a TSER model to address
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sub-problem 2. Acquiring in vivo data of this type is beyond the scope of this project, however,
methods for generating simulated healing data are investigated.

6.2 Model Identification

A literature survey was conducted to identify suitable model types for sub-problem 2. Initially,
time series classification methods were investigated as it was hypothesised that a discrete value for
healing could be used in training, therefore making the task a classification problem, however this
was not the case. Recently, Tan et al. introduced the TSER task as a subset of TSR and related it
directly to current TSC-based models [9]. TSER is closely related to TSC with the main difference
being that TSC predicts a categorical class label and TSER predicts a continuous scalar value [9].

TSER could be considered an example of scalar-on-function regression (SoFR). This is part of
a widely studied topic within statistics called functional regression [17]. Functional regression can
be split into three categories: 1) scalar responses with functional predictors (SoFR); 2) functional
responses with scalar predictors (function-on-scalar regression); and 3) functional responses on
functional predictors (function-on-function regression). In the case of TSER the functional data
are the time series, where the values present are a function of time. Representing the time series
data in its functional form allows SoFR to apply a basis function, such as a Wavelet or Fourier
Transform, to reduce noise in the data. A regression model is then fitted to the smoothed data to
predict a scalar value.

Examples of TSER in the machine learning community are sparse. However, there have been a
number of specialized applications using photoplethysmogram (PPG) sensors. One such application
aims to predict heart rate (HR) from the PPG sensor signal [18]. Similar to [6] for HAR, the methods
rely on spectral analysis. Reiss et al. show that these methods are not very accurate and proposes
a new CNN based approach that is significantly more accurate compared to the existing spectral
methods [18].

6.3 Data requirements

Following the identification of TSER models as a proposed method for sub-problem two, the data
requirements for sub-problem two were to be established. To train a TSER model effectively,
the strain measurements obtained from the novel sensor need to be associated with the level of
calcification that has occurred in the healing bone. Dr Munros initial study used data of this
type, but more data is required for training a TSER model. Furthermore, it was determined that,
initially, the data used to train a TSER model was to be of one activity type: walking. Within the
wider project, this gave two options available for acquiring the required data: 1) Collect simulated
healing data using an in vitro sheep model or, 2) Use a finite element analysis (FEA) model of a
sheep spine to simulate forces acting on the spine as healing proceeds.

Due to time constraints, it was infeasible to generate enough in vitro sheep data to train a TSER
model, therefore, the FEA model was investigated. The FEA model was developed by mechanical
engineering master’s student Sebastian Jones and is a reconstructed 3D-scan of a healthy sheep
spine. An FEA model works similar to the mechanobiological models. The mechanobiological
modelling process starts from the initial phase of healing at the fracture site. Finite element
analysis (FEA) is used to calculate mechanical parameters such as stress, strain, pressure, and
fluid velocity around the fracture site. These parameters then regulate the biological processes by
solving the PDEs corresponding to the biological processes of interest, which here is the level of
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Figure 5: Example loading conditions input to the FEA model.

calcification at the healing site. Different values of mechanical loading and deformation lead to
different outcomes in the level of calcification that has occurred. The values that determine this
are called the loading conditions.

The loading conditions of the FEA model describe the forces acting on the spine when under-
going a certain activity. Since the initial TSER model is focused on only walking, the loading
conditions input to the FEA model should be similar to those observed when a sheep is walking. In
general, walking is the most common activity the sheep will be performing when being monitored.
Furthermore, recent studies [28, 29, 30] have shown that analysing gait in both sheep and humans
can provide valuable insight into the strengthening process of the observed bone. Gait in both sheep
and humans is periodic, with popular methods for analysing gait focusing on parameters such as,
stance-swing phase duration or peak vertical forces [28]. This periodicity gives a starting point for
generating loading conditions for the FEA model.

The loading conditions implemented are based on a sine wave and an example input can be seen
in figure 5. Equation 1 shows a basic sine wave.

f(t) = A ∗ sin(ft+ φ) (1)

The amplitude (A) of the sine wave is analogous to the vertical forces the sheep imparts on the
ground when walking, the frequency (f) is analogous to duration of the gait cycle and the phase (φ)
is analogous to a delayed starting time. These values are all able to be adjusted to produce many
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Figure 6: Example FEA model output based on sine wave loading conditions.

different loading conditions. This is a key requirement for the loading conditions. Consider gait
in either humans or sheep, individuals in both groups will have a particular gait cycle, producing
different values for the parameters that can be derived from the gait cycle. For example, changes in
the stride length or peak vertical force (PVF) may be observed between individuals [30]. Therefore,
adjusting the input parameters to the sine wave is necessary for generating useful data from the
FEA model.

Using these loading conditions, the FEA model can solve for the strain at the position of the
sensor implanted in the titanium rod at each time step. This will then give a transient response, in
terms of strain, which is dependent on the function used as the loading condition. Figure 6 shows
an example output for the loading condition input in figure 5.

Future work using these loading conditions is to generate healing-over-time data for a walking-
based activity for different sheep.

7 Summary

This research project investigates a machine learning approach to modelling and predicting biome-
chanical measures of strain across bone. The overall problem can be broken down into three distinct
sub-problems: 1) determining the activity occurring, 2) analysing changes in subsequent occurrences
of an activity, and 3) correlating those changes to a biomechanical model of healing.

A goal for the wider project is to wirelessly record data from the sensor that is implanted in a
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sheep spinal fusion as it walks over a pressure sensitive walkway. The sheep may begin standing
still on the walkway before walking over sporadically. Therefore, it is expected that when sheep
move over the walkway the strain data recorded will contain multiple activities and these activities
will require segmentation to accurately predict the stability of the healing bone. Sub-problem one
is to determine the activity occurring at a given time. Combining the univariate time series data
recorded from the novel microelectronic strain with a discrete label for the activity gives a time
series classification (TSC) problem. An application of the TSC task is human activity recognition
(HAR) where the goal is to recognize the activity of an agent based on a sequence of observations
of that agents’ actions. This work has implemented three models for recognising simulated sheep
activities based on the novel strain sensor output. A time series forest (TSF), k-Nearest Neighbours
(kNN), and a 1D-CNN were trained using two versions of the simulated data. The first version
of the data used linear interpolation before being input to the models, and the second version
extracted activity windows from the simulated data. The TSF model performed the best overall,
achieving an average LOOCV accuracy of 0.857 using the interpolated data. The implemented
1D-CNN models were not as successful, achieving an average LOOCV accuracy of 0.595 and 0.548
on the interpolated and window data respectively. Future work on this sub-problem will involve
fine tuning the 1D-CNN models and gathering more training data to improve performance.

The sheep will be directed down the walkway approximately once per month until the spinal
fusion reaches maturity. Therefore, each month a new activity profile will be generated. Analysing
changes in subsequent occurrences of the same activity is the goal of sub-problem 2. Specifically,
the task is to map a multivariate time series input to an external continuous value for the level
of healing that has occurred. Predicting a continuous target value based on a time series input is
the goal of the time series regression task. A subset of the time series regression task is the time
series extrinsic regression task. The time series extrinsic regression task is to predict an external
continuous value that is dependent on the entire time series. A model of this type will be required
for addressing sub-problem 2 with the external continuous value being the level of calcification that
has occurred at the healing site. A finite element analysis model was developed by mechanical
engineering master’s student Sebastian Jones to simulate forces acting on a sheep spine. The finite
element analysis model was investigated with regard to generating simulated data pertaining to
healing-over-time for use in developing a time series extrinsic regression model.

8 Future Work

Sub-problem one is focused on determining the activity occurring based on the strain data recorded
from the novel microelectronic strain sensor. Fine tuning the CNN-based models and increasing
the amount of training data available to them is an area of future work for sub-problem one.
Furthermore, acquiring in vivo data and comparing this with the simulated procedure used here is
another area of future work.

Sub-problem two is focused on analysing changes in subsequent occurrences of an activity. This
project identifies the time series extrinsic regression (TSER) task as analogous to sub-problem two.
Acquiring enough data to develop a TSER-based model is necessary to addressing sub-problem two.
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