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Abstract

Medical imaging modalities such as HRCT and MRI produce stacks of images depicting regions of different
tissue. These image stacks can be used to reconstruct the 3D structure of internal organs. The renders or
models produced are useful in diagnosis, treatment, education, surgical simulation, robot assisted surgery,
and virtual reality. Correspondence methods acting on contours segmented from scan images are one such
way of 3D reconstruction. These methods have difficulty in reconstructing structures such as branches and
bends. There is ambiguity in contour correspondence, and extra steps must be added to point correspon-
dence. This paper builds upon prior correspondence methods, with a new approach to point correspondence,
and specifically aiming to improve on reconstructing these problematic cases. Analysis has been performed
on synthetic models and real scan data. The proposed method, “contour splitting and point angle”, handles
low plane count and branching structures better than prior correspondence methods, giving more accurate
reconstructions. On average the proposed method improved in reconstruction accuracy compared to the
most related prior method by 15.2%. The main contribution is the new techniques and algorithms developed
for point correspondence, which may be useful in future applications.
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0 Overview

The field of HRCT and MRI reconstructions will be introduced, followed by a broad background survey of
stages in the reconstruction pipeline, with prior work relevant to this paper. The background summary will
give a clear overview of what needs improvement. A method, “contour splitting and point angle”, will be
introduced which aims to satisfy these improvements. Analysis will show that this method does improve
upon prior work in the intended way.

The latest version of this paper may be found here1.

1https://github.com/cstevenson3/cosc470writing/blob/main/report.pdf
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1 Introduction

Medical imaging modalities such as HRCT and MRI produce stacks of images depicting regions of different
tissue. These image stacks can be used to reconstruct the 3D structure of internal organs. The renders or
models produced are useful in diagnosis, treatment, education, surgical simulation, robot assisted surgery,
and virtual reality [1, 2, 3, 4]. The process of producing renders or reconstructions can be improved by
reducing manual user input, improving reconstruction accuracy, or improving computational efficiency.

Prior methods include volumetric rendering (directly rendering the image data) or surface reconstruction
(creating a mesh to render). Surface reconstruction methods include marching cubes, and point cloud
methods such as screened Poisson. Recent papers [1, 2] have examined contour-based reconstructions, first
segmenting images to find contours, then corresponding contours and points across slices. This paper will
focus on extending this type of method.

1.1 Motivation

A paper by Mackay [1] investigates the use of dynamic time warping as an algorithm for point correspondence.
The analysis shows two problems impacting reconstruction accuracy. Firstly, low slice count impacts the
accuracy of all reconstruction methods analysed. Secondly, branches and other such structures can be
problematic to reconstruct, affecting both contour and point correspondence.

This project aims to improve the accuracy of reconstructions involving branches and other problematic
structures. In particular, point correspondence will be investigated. The lungs are used as an organ of focus,
as a good example structure to work on. The bronchi have many branches and the tubular shapes are easy
to understand.
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2 Background

We begin with a look at the field of medical imaging in general, then typical methods in rendering or
reconstructing scan data. Finally, contour-based correspondence methods are looked at in depth as the
approach this report builds upon.

2.1 Overview

Images from scans (also referred to as sections, slices, or planes) can be segmented based on intensity into
pixel regions to define structure boundaries. These can be processed further by finding contours to represent
these boundaries.

Volumetric rendering treats pixels in images as voxels, and a variety of rasterization and raycasting
techniques are available for rendering these.

Surface rendering requires a surface be defined, either implicitly or as a mesh. Point cloud methods
generate implicit surfaces, whilst meshes can be constructed via marching cubes or contour-based methods.

2.2 Applications

Xuyi et al. [5] use 3D reconstructions from hip CT scans to make patient-specific surgery plans. From the
model they measure the direction and degree of the acetabular fragment, and use this to guide their surgery.

Pan et al. [3] refers to the importance of 3D reconstructions and rendering in robot-assisted surgery.
With real time rendering being a priority, surface reconstructions are preferred over volume rendering. Of
the four methods analysed, marching cubes was found to be the most suitable due to its speed and render
quality.

Lim et al. [6] found that the use of 3D printed cardiac models in education resulted in a statistically
significant improvement in test scores of medical students.

Lobachev et al. [4] developed a system for virtual reality rendering of reconstructions from immunohis-
tological sections. They state that domain experts are better at analysing details in the original images, but
only 3D reconstructions can offer a view of structures spanning across slices, such as blood vessels. They
assert that virtual reality is the best way to allow these domain experts to view 3D reconstructions, giving
them natural control over their view. High frames per second is important in VR to avoid nausea etc., and
volumetric rendering may be unsuitable, with FPS as low as 25 [7]. For this reason a mesh is reconstructed
with marching cubes to render.

2.3 Scanning and Image Processing

The nature of scanning gives some considerations for how robust reconstructions have to be. As with
most areas involving measurement of the real world, unwanted artefacts such as noise are introduced in
the imaging process. There can also be variation from subject to subject and between imaging machines.
Therefore standard image processing techniques are used to pick out the parts of images which are relevant
to the application. Running signal processing on the 2D data (as opposed to considering the whole image
stack in the reconstruction stage) reduces complexity. However, techniques considering the image data from
all slices have also been investigated.

2.3.1 Scanning

The effect of slice thickness on detection has been considered by Fischback et al. [8]. They found that
reduced slice thickness improves on small nodule detection. They compared 5mm and 1.25mm reconstruction
intervals. From this we infer that higher plane count scanning through an object is better. However for
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small objects, say 10mm in size, we may only get up to 10 planes passing through, and so reconstruction
methods need to cope with smaller plane counts.

Similarly, slice thickness has been considered for volume estimiation by Laakso et al. [9]. They found no
significant difference in estimated volume when using different slice thicknesses, although they recommend
using smaller slices where possible. It is stated that smaller slice thickness results in longer scan times, so
it may still be worth considering larger slice thicknesses and lower plane counts.

2.3.2 Segmentation

Segmentation is the process of picking out the regions of pixels belonging to individual objects in an image.
From this the projected geometry of the object onto the image can be inferred, which is then used in
reconstruction or rendering. Birkfellner [10] observes that organs are usually composed of multiple tissue
types, which show up as different intensities under imaging. This makes segmentation “a rather complex,
specialized procedure often requiring considerable manual interaction”. We often focus on particular organs
when developing segmentation methods.

Birkfellner [10] covers some advanced segmentation methods. The watershed transform for example uses
the physical idea of water running to the bottom of valleys in a landscape. After taking a gradient transform
on an image, edges are peaks in the landscape, and the virtual water will fill up basins representing segments
in the image. Various interpretations of the physical behaviour can be used.

Carr [11] refers to various morphological methods used to remove noise. An opening operation acts
like a low pass filter whilst still preserving edges. Opening and closing in sequence tends to be better at
maintaining the mean intensity.

Mukundan [2] observes that in HRCT lung scans, tissue regions are “characterized by different and easily
separable intensity levels”. In this case simple thresholding can be used to pick out regions.

2.3.3 Contour Finding

Rather than use pixels/voxels, some reconstruction techniques build up from contours. These contours are
extracted as the boundaries of objects in each image.

Mukundan [2] starts with a binary image after thresholding. Eroding the image with a 3x3 element then
subtracting this from the thresholded image gives one pixel wide edges. Sequential edge following is used to
extract contours. Discarding small contours reduces the number of contours significantly.

Pu et al. [12] introduce a border marching algorithm with an adaptive step size to find the outer contours
of the lungs. The metric for adjusting the step size for a border segment is based on how far (at most) the
segment lies from the true border. This method has the advantage of including small juxtapleural pulmonary
modules in the segmentation despite their imaged intensity being dissimilar to the rest of the lung. Mackay
[1] uses this method.

2.3.4 Contour Interpolation

Between two slices filled with contours, new slices can be added, with contours interpolated from those in
the slices above and below them. Some methods are able to do this without a contour correspondence.

Barrett et al. [13] present a contour interpolation algorithm in image space based on morphological
operations. An image with both contours present (as different grayscale values) is dilated until the space
between contours is filled. The front where the two dilations meet is where the interpolated contour is found.
It is noted that this method handles branching cases with no modification necessary.

Chai et al. [14] use partial differential equations to interpolate between contours on a terrain map. Their
method produces smooth interpolations, and can handle complex shapes such as two or three branches.
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2.4 Typical Reconstruction Methods

Many reconstruction methods exist. Volumetric rendering and marching cubes use the original image stack
data, whilst other mesh reconstruction methods may use contours processed from scan data.

2.4.1 Volumetric Rendering

Each image in the image stack is treated as a slice with thickness. Thus the pixels in the image are voxels,
and various volume rendering techniques can be used to directly render the data without an intermediate
structural representation such as a mesh. Since every voxel may be involved in the final render, naive
implementations can be expensive. Techniques to improve the render quality and performance have been
investigated.

Rasterization In rasterization, the forward direction of an object’s effect on an image is considered. Each
voxel may directly affect the final render, or first be projected onto a intermediate object which is then itself
drawn.

Splatting takes each voxel’s value and “splats” it against the drawn image, contributing to a few pixels,
with its contribution fading away from the centre pixel. Zwicker et al. [15] use elliptic Gaussian kernels as
the basis of the shape of each splat.

Texture-based volume rendering intersects many planes with the volume [16]. On these planes polygons
are rendered, with texture mappings from their coordinates to the 3D space of the volume, to pull texture
values from the voxels. The planes must not be parallel to the viewing direction.

Raycasting In raycasting, we take each pixel of the render and work backwards to find which objects
affect it. Each pixel emits a ray which intersects with many voxels. The weighting of voxels is dependent
on the technique.

Maximum intensity projection (MIP) is a raycasting method where rays project the most intense voxel
they pass through [10]. The images produced have high contrast detail and are easy to understand. Summed
voxel rendering is another raycasting method where rays sum up intensities from every voxel they pass
through, giving a blurred image [10].

Fishman et al. [17] make comparisons between maximum intensity projection and other volume render-
ing. MIP tends to not contrast the background well with the structure of interest. Other volume rendering
methods can weight voxels differently and give different tissue types different colours.

Intersecting arbitrary rays with voxels can be computationally expensive. Shear-warp rendering solves
this by using projections which make rays orthogonal to the voxel axes [18].

2.4.2 Surface Reconstructions

In each image of the image stack, we can see where the boundaries of tissue are. We can therefore describe
the geometry of a structure as it intersects the image plane. By combining all images in the stack, a surface
reconstruction of the entire object can be found, provided the relationships between slices are inferred
accurately. Surfaces have the advantage of having commonplace rendering techniques, and support on 3D
printers.

Marching Cubes Marching cubes [19] converts voxels into surfaces. Each voxel either belongs to a
structure or does not, based on imaged intensity. Surface voxels (“inside” voxels bordering “outside” voxels,
on some isosurface) are found. Each voxel has its corners defined as inside or outside based on its neighbours,
and is then assigned a set of triangles based on those corners, using a lookup table. The triangles are joined
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in neighbouring surface voxels to form the overall mesh. The results tend to look jagged, and smoothing is
usually applied either to the mesh or during rendering for a more visually accurate output.

Newman et al. [20] have conducted a comprehensive survey of marching cubes. One problem marching
cubes has is ambiguity which induces defects. The survey recommends avoiding lookup tables with reflective
symmetry, where “outside” and “inside” corners of a voxel are swapped to give the same triangle set but
with opposite normals. Instead only rotational symmetry (rotating corners around the voxel) is allowed.
Such a lookup table was identified by Nielson et al. [21].

Point Cloud Methods One of the more general ways of defining a surface with incomplete data is by
sampling many points from it, and making assumptions about the way these points would be connected.
This is common in 3D depth scanning of exteriors of objects, where many points are sampled but the entire
surface is not known and must be inferred. If we treat the boundaries of tissue regions in images as sets
of points, we can apply point cloud methods to all the points gathered. The techniques can be tuned for
specific applications. Approximating methods produce surfaces which lean more heavily on the assumptions
made, with the points guiding the end results. This is useful when the sampling of the points is noisy.
Methods which interpolate assume the points are perfect and so the surfaces produced must pass through
them. It is common to define a function from 3D space to a value so that the surface should be found where
the function output is zero, then an isosurface at zero is generated. A drawback of point cloud methods is
that the explicit relations between points on the same contour are lost. In addition, when planes are more
separated, artefacts tend to appear.

Models Braude et al. [22] employ Multi-level Partition of Unity (MPU) implicit models to generate
isosurfaces from. MPU closely approximates Euclidean distance near points. This method requires surface
normals.

Guennebaud et al. [23] fit algebraic spheres to point sets to construct surfaces. Their method (APSS)
performs better than prior methods on sharp features and sparse data.

Oztireli et al. [24] combine Moving Least Squares (MLS) with local kernel regression to obtain Ro-
bust Implicit Moving Least Squares (RIMLS). This method reconstructs sharp (non-smooth) corners more
accurately than APSS.

Taubin et al. [25] demonstrate colour maps extrapolated from source points onto a reconstructed surface.

Estimating Normals Some of the methods above require normals for each point. Estimating normals
from the points sampled requires some understanding of the structure itself.

Mitra et al. [26] use least squares distance to fit a plane to a neighbourhood of points for each point in
the cloud. There is a sweet spot for the radius of the neighbourhood used. Small radius makes noisy points
have more impact on the plane found, and large radius allows for surface curvature to introduce error.

Mesh Rendering Mackay [1] states that surface rendering is not as widely implemented as volume
rendering in medical contexts. However mesh rendering is abundant in literature from applications such as
video games. Should mesh reconstruction become more accurate and faster, more implementations of mesh
rendering for medical imaging may become available.

2.5 Testing

The end aim of these reconstructions and renders is to give humans a better visualisation of internal struc-
tures. However to compare methods objective testing is required. Requiring human experts to come to a
consensus on desired outputs is resource consuming for stages such as image segmentation, and infeasible
for complex structures such as meshes. Therefore metrics and repeatable methods have been devised to test
algorithms.
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2.5.1 Measuring Similarity in Segmentation

Pixel-wise XOR operations are common, simply working out where an ideal segmentation and an output
segmentation differ.

Pu et al. [12] use a reference segmentation contour (defined by experts), and evaluate the distribution
of distance error along their result contour from this reference.

2.5.2 Generating Models

It is difficult to obtain real models of internal structures. Techniques to generate synthetic models suitable
for testing have been developed.

Mackay [1] uses Blender3D to create test models, by creating surface of revolutions about bezier curves.
Multiple surfaces are merged for more complex structures such as branches. The main intent here was
to create simple models of problem structures. Contours can be sampled from these models by plane
intersections.

Mackay [1] also proposes an alternative method of generating test data, where a side view of a branching
structure is drawn in black. An inter-slice distance is defined to separate rows. Each row is scanned for
black pixels. When a black pixel is encountered, a contour is generated by revolving points about this pixel
location. Noise can be added in. Where contours intersect, they are merged. This allows for branching
structures to be generated by this method.

Pluta et al. [27] propose a rule-based method of generating lung models, including deformations and
noise. Their rules are based on airflow and measured constants, and the distribution of final bronchioles in
a lung. Their results are suitably accurate for testing all parts of lung reconstruction methods.

2.5.3 Measuring Similarity in 3D Models

Mackay [1] uses Hausdorff distance (essentially a maximum deviation between point sets) to measure mesh
similarity. Points are sampled from a ground truth model and the nearest distance is found to the recon-
structed model.

Meshes can be sliced at the same heights and compared slicewise to reduce similarity to a 2D problem.

Shum et al. [28] compare simple 3D objects by comparing the curvature of points based on spherical
coordinates. This could be applied locally on more complex medical reconstructions.

2.6 Performance

Recent papers in medical imaging reconstructions tend to have an emphasis on taking advantage of modern
hardware. This can be achieved through parallelization or GPU implementations.

Saxena et al. [29] describe parallel techniques for various image processing tasks such as segmentation
and noise reduction. The main idea is to tile an image and let different processors work on different tiles,
then deal with the borders when recombining the tiles. They found their parallel implementation to be 2.5
times faster than a sequential implementation.

Alsmirat et al. [30] investigate pure GPU and hybrid CPU-GPU implementations of segmentation of
medical images. They found that both outperform a CPU only implementation, and the hybrid method
performs the best.
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2.7 Correspondence Reconstruction Methods

Contour-based mesh reconstruction first gathers contours from image data, then corresponds contours be-
tween slices. Matched contours then go through point correspondence and triangulation to produce a final
mesh. This approach to mesh reconstructions is the focus of this paper.

2.7.1 Contour Correspondence

Figure 1: Example of scanned structure and contours extracted

Rather than lose the relationship be-
tween points, the original contours can
be used in creating a surface recon-
struction. Working out which con-
tours on which slices represent a con-
nected tissue in the original struc-
ture is called contour correspondence,
and the resulting correspondences are
used in later steps of reconstruc-
tion.

Herbert et al. [31] classify correspon-
dence algorithms into four types.

• Manual methods use user input to connect contours. This is time consuming for large datasets.

• Local algorithms takes pairs of slices at a time and considers contour matchings between these.

• Global algorithms look for contour pairings across all sections.

• Growing algorithms create a hierarchy of components, attempting to join unmatched contours onto
existing components if suitable.

Contour centroid position comparison is common in local algorithms.

Herbert et al. [31] suggest growing objects one contour at a time instead of considering pairings of
contours globally. In preprocessing, spatial information is gathered such as contour characteristics (position,
shape, size), intra-sectional relationships between contours (to validate complex structures later), and inter-
sectional relationships. Contour relationship metrics include distance between centroids, distance between
major/minor axes, minimum bounding rectangle overlap, shape comparison via compactness ratios, and
surroundness (how deep the contour is nested in larger contours).

Herbert et al. [31] include semantic information given by the user on the expected components in a
reconstruction, and their spatial relation to each other. A starting contour is found for each component
before the growing process starts.

Mukundan [2] begins point correspondence without an explicit contour correspondence already found.
If two point correspondences are found as neighbours belonging to the same pair of contours, the search for
further point correspondences is narrowed to these two contours. This effectively gives a temporary contour
correspondence.

2.7.2 Point Correspondence

Point correspondence is an optional step in surface reconstructions, where points on matched contours are
matched to each other as a precursor to triangulation.

Mukundan [2] uses distance in the XZ plane as a metric for matching points. Other optional constraints
include matching the next point close to the previous point.

9



(a) DTW path
through cost matrix (b) Point correspondence

Figure 2: DTW path finding through a cost matrix to give a point correspondence [1]

Mackay [1] proposes Dynamic Time Warping (DTW) as a method of point correspondence. DTW is
intended to match features on the same structure across different times. In point correspondence, it matches
points on contours which are from the same structure but in different slices, so slightly warped. At any
time during DTW a pair of points from both contours is matched, then the next points in both contours
are considered as matches for the current points. A cost matrix is populated based on point distance, then
a path is found aiming to minimise global distance (See Figure 3). DTW has some basic constraints when
finding a warp path, but Mackay suggests adding further constraints as a potential improvement. It tends
to be that as planes are more separated, the contours undergoing point correspondence are more dissimilar,
and DTW performs worse in reconstructing these.

2.7.3 Mesh Triangulation

A surface can be represented as a set of primitive elements, with triangles being the simplest. They are
defined by three points in 3D space. The final step of mesh reconstruction is taking the relationships
inferred by contour and point correspondence, and generating triangles to connect points whilst taking
these relationships into account.

Mackay [1] begins with two ordered sets of points X and Y, from the two contours matched, with some
edges provided by point correspondence. As a result of the constraints on DTW, there are three cases for
each point xm on the first contour:

• xm has an edge with yn and xm+1 has an edge with yn+1. These points are direct neighbours on their
respective contours, and form a quad which is trivial to triangulate.

• xm has edges with a sequence of points {yn, yn+1, ..., yn+i}. xm has a one-to-many point correspon-
dence with these points. This can be triangulated with a triangle fan centering about xm.

• Each point in the sequence {xm, xm+1, ..., xm+i} has edges with a point yn. This is the opposite of
the previous case and can likewise be triangulated with a triangle fan centering about yn.

Li et al. [32] observe that when m and n differ greatly, one-to-many point correspondences are common,
and the triangulation becomes rough.

2.7.4 Branching Problem

A simple structure is easy to infer from its images. On every slice the structure is present in, we see
one contour, and all these contours are similarly positioned and shaped in adjacent slices. More complex
structures such as a branch show up differently, and it becomes harder to infer the original structure. Contour
correspondence must be adjusted to deduce these unusual structures when they appear. Even when the
general layout of the original structure is inferred through contour correspondence, point correspondence
and mesh triangulation can be difficult when the shapes of contours change suddenly.
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(a) Contour merging for branching
cases (b) DTW pathing issues on branching cases

Figure 3: Mackay contour merging and DTW

Mackay [1] looks for lung branches as one contour approximately splitting in half into two contours, for
contour correspondence.

Mackay [1] uses contour merging to help DTW point correspondence in the branching case. In a contour
correspondence where there is a slice with a single contour and a slice with two contours, the two contours
on the same slice are merged at their nearest point to give one larger contour (See Figure 3a). Point
correspondence between the single contour and the merged contour can then proceed as normal. In some
branching cases however, the triangulated mesh is twisted, as though DTW has not matched the correct
points together (See Figure 3b). This problem is left for further research.

2.8 Background Summary

Scans have multiple planes separated by some distance. For the same spatial resolution, smaller objects
will have fewer planes scanning through them. Alternatively, for a given sized object, lower plane counts
are better for lowering scan time. Reconstruction methods which can handle lower plane counts should give
more accurate reconstructions of smaller objects, or allow for shorter scan times.

General methods related to volumetric rendering and mesh reconstructions have been applied to scans.
These all have some drawback. For volumetric rendering it is the render time, for marching cubes it is the
jagged meshes, and for point cloud methods it is the approximation of structure.

Counter-based correspondence methods aim to solve these issues. Contour correspondence and point
correspondence are achieved through variations of Euclidean distance and other metrics. Mackay was able
to achieve similar or better accuracy to prior methods with substantially lower triangle count. Mackay found
that branches and other structures cause problems in both contour and point correspondence. His method
using DTW, like others, becomes less accurate as plane count decreases.

A new point correspondence method can improve upon prior approaches by reconstructing branches and
other structures more accurately, and handling lower plane counts better.
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3 Method

In this section I detail how a new point correspondence method has been constructed, with the intention of
handling branching structures and lower plane counts better.

3.1 Proposal

The proposed system consists of:

• Contour Splitting, a new approach to enabling point correspondence on branches and other structures

• Point Angle, an alternative algorithm for point correspondence.

In conjunction they are referred to as Contour Splitting and Point Angle (CSPA).

3.1.1 Contour Splitting

For brevity, contour correspondences of 1-to-2 will be considered. Point correspondence algorithms act on
1-to-1 contour matchings, so 1-to-2 cases must be reduced to these.

Mackay’s approach was contour merging, where the 2 contour side of the correspondence is merged. The
closest pair of points across the contours is found, to join them into a single contour (See Figure 3a). This
gives a single 1-to-1 case for point correspondence to act on. A disadvantage of this method is that the
merged contour has an unusual shape, which can cause point correspondence algorithms to behave poorly.

Figure 4: Contour splitting

The proposed technique instead splits the 1 contour side of the correspondence. The best fit line to
divide the 2 contour side is found, giving the angle of the line to split the 1 contour (See Figure 4). Each
half of the split 1 contour is paired with its corresponding contour on the 2 contour side. This gives two
1-to-1 cases for point correspondence to act on. The contours produced are well shaped and suitable for
point correspondence algorithms designed for simpler cases.

Adjustments can be made to the position of the split line to improve accuracy.

• The ratio of contour areas on the 2 contour side can be reflected in the split contour by adjusting
which points the split line connects to (See Figure 5a). This preserves the internal cross section of
each branch half as they join.

12



(a) Ratio of areas under splitting (b) Additional points added to split line

Figure 5: Implementation features for contour splitting

• To achieve a smooth point correspondence along the inside of the branch (where the branches join
each other), the split line must have points added along it (See Figure 5b). This is in proportion to
the number of points on the original contour.

• The split line may also be adjusted in height, to reflect the likelihood the branch split is somewhere
between the two planes of contours. With no further calculation, the height is assumed to be halfway.
A semi-circular curve (changing in height above the split line) creates a split line joint which mimics
the intersection of two cylinders, which is approximately what is expected from two branches coming
together.

3.1.2 Point Angle

Figure 6: Correspondence by
point angle

Prior methods of point correspondence consider the Euclidean distance
between points on corresponded contours. The proposed algorithm in-
stead considers similar angular distance relative to the contour’s centroid
(See Figure 6). For contours where every border point can be seen from
the centroid (similar to star-shaped polygons), the angular distance met-
ric is monotonically increasing as we progress along the contour’s specified
order (starting from the smallest angle point). In point correspondence,
the contours’ point angle metrics are leapfrogged between to join points
(See Figure 7). This leapfrogging assumes the monotonically increasing
property. For contours which “double back” (are not star-shaped), the
monotonically increasing property can be enforced when calculating the
point angle metric, by recording the previous angle if the current angle
is smaller.

This can lead to sections of points with the same point angle met-
ric, and leapfrogging which produces unideal many-to-one mappings. To
counter this, a second metric is added, which is simply progression along
the number of points in the contour (normalized), starting from the same point as the angle metric. The
angle and progression metrics are weighted and summed before the leapfrogging correspondence. This pro-
gression metric is actually well suited to contour data with similarly distanced points, which is what we get
from uncompressed image contours. In these cases it may be suitable to only use progression.
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3.2 Implementation

Figure 7: Leapfrogging of point
angle metric

Mackay’s report provides a complete implementation of contour and point
correspondence2. Contour correspondence is implemented by checking
the distance between centroids relative to the radius of the contours,
which indicates if there is any overlap. The complete implementation
was modified in this project to add the options of contour splitting and
point angle for point correspondence. The modified source code and tools
are available here 3.

This paper also contributes a new tool for testing. A python script
has been developed to automate reconstruction and analysis of multiple
models and plane counts. The script calls the reconstruction binary and
feeds it every combination of model and plane count to obtain reconstruc-
tions. PyMeshLab [33] is then used to call the Hausdorff distance filter
with reconstructions and their original counterparts, giving measurements
which are then stored in a JSON file. The script includes methods to filter
this file, to quickly look up measurements across different reconstruction
methods for a given model and plane count.

2https://drive.google.com/open?id=1EHIx3dOOwcP1KTxWxhv8NWyROHAyVZ-P
3https://github.com/cstevenson3/cosc470code
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4 Analysis

To analyse the effectiveness of the proposed method in improving reconstruction accuracy, synthetic models
are intersected with planes to give contours of points, which are then given as input to reconstruction. The
reconstructions from different methods are compared to the original and against each other. The observations
are then confirmed with objective measurements such as Hausdorff distance. Finally, a reconstruction from
real lung scans will be explored.

Mackay compared his method to typical non contour-based methods, the results of which are available
in his paper [1]. For simplicity we will only compare the proposed method to his method.

4.1 Ground Truth

For ground truth I used the same synthetic models Mackay generated for analysis (See Figure 8). These can
be downloaded standalone4, but are also included alongside my implementation5. Planes are intersected
with the models to give contours of points, emulating those which would be extracted from scanning and
segmenting a real object of the same shape. Plane counts of 10, 20, 30, 40 and 50 are used to emulate
different scan slice thicknesses.

Additionally, Meshlab was used to copy specific sections of these models into new files, to focus recon-
structions on the difficult cases the proposed method is intended to improve on. These are named after the
original model and which slice range (based on the 10 slice levels version) is being copied.

(a) simple (b) simple-branch (c) simple-branch-2-6

(d) multi-branch (e) multi-branch-2-7 (f) bend

Figure 8: Original Models

4https://drive.google.com/open?id=1QYsQa-qsz9mwDRz_nk4ohtD4pITV9AD3
5https://github.com/cstevenson3/cosc470code
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4.2 Measurements

For reconstruction accuracy, Mackay used the Hausdorff distance filter built into Meshlab, which takes as
input a sampled mesh (the mesh to sample points from), and a target mesh (to find the closest distance
from each sample point). Many points are sampled and mean distance is reported. Lower mean distance is
better. I may refer to the forward direction as when the original synthetic mesh is the sampled mesh, and
the reconstructed mesh is the targest mesh, with reverse being the opposite.

The Hausdorff distance filter also has parameters related to sampling, such as whether vertices, edges, or
faces are sampled. The choices of sample/target meshes and these parameters are important, as the nature
of how the models and reconstructions are generated affect different methods differently. For example,
all vertices in Mackay’s reconstructions are the original points given by plane sampling, and so lie on a
face in the original mesh. Hence the reverse Hausdorff distance filter with only vertices sampled gives a
measurement of zero. Whereas, the proposed method adds additional points, and so is unlikely to achieve
this zero measurement. For this reason only faces will be sampled. When it comes to direction, extraneous
faces on a target mesh may reduce Hausdorff distance, but extraneous faces on a sampled mesh increase
Hausdorff distance (usually the preferred interpretation). For this reason, in same examined cases a direction
may be omitted, for reasons which will be explained.

For contour merging and DTW, Mackay’s implementation is used. For the proposed method, the same
implementation is used except where contour splitting and point angle replace the point correspondence
stage. To start with, 50% angle weight (and 50% progression) is used in the point angle metric.

16



4.2.1 Simple Model Reconstruction

A simple tube is reconstructed.

(a) Original

(b) DTW 50 planes (c) DTW 10 planes

(d) CSPA 50 planes (e) CSPA 10 planes

Figure 9: Reconstructions of simple model

Both reconstruction methods handle this simple case well, with both 50 and 10 plane samples. In the 10
plane reconstruction, they both have visible jagged parts at the bottom, although CSPA seems to be better
in this area. We now look at Hausdorff distance to confirm this.

No. of Slices Sampled
Method 10 20 30 40 50

Contour Merging + DTW 0.0368 0.0274 0.0174 0.0195 0.0145
Contour Splitting + Point Angle (CSPA) 0.0297 0.0240 0.0165 0.0190 0.0140

Table 1: Simple model, mean Hausdorff distance from original to reconstruction

In Table 1, the anamoly at 40 samples (being higher than expected) is caused by the 40 plane samples
not spanning the full original model. This affects both methods equivalently so has been left in for relative
comparison.

No. of Slices Sampled
Method 10 20 30 40 50

Contour Merging + DTW 0.0186 0.00836 0.00479 0.00336 0.00275
Contour Splitting + Point Angle (CSPA) 0.0102 0.00401 0.00281 0.00236 0.00215

Table 2: Simple model, mean Hausdorff distance from reconstruction to original

As we can see from Table 2 and Figure 10, our data agrees with the trend in Mackay’s measurements, in
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Figure 10: Simple model, mean Hausdorff distance from reconstruction to original

that more slices sampled results in more accurate reconstructions. At high sample rates, the two methods
have similar accuracies. However, as the sample rate lowers, CSPA has better measured accuracy than
DTW. This is a trend which will continue for the remaining models.
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4.2.2 Simple Branch Reconstruction

A simple model containing a branch is reconstructed. Here there are cases where contour correspondence is
invalid (for 20 and 50 plane samples), and 40 plane samples has an issue which will be explained later, so
only 10 and 30 plane samples are shown first.

(a) Original

(b) DTW 30 planes (c) DTW 10 planes

(d) CSPA 30 planes (e) CSPA 10 planes

Figure 11: Reconstructions of simple branch model

At 30 plane samples we see decent reconstructions, with CSPA having a slightly less clean split. At 10
plane samples, DTW reconstructs one side of the branch well, but the other side is twisted, and the split is
missing triangles. CSPA on the other hand has a clean reconstruction in terms of being closed and smooth
on the branches, but there is an obvious protrusion where the split line has been slightly misplaced.

These 10-plane figures highlight the behaviours of the two approaches. With merging + DTW, the
constraints on DTW force the point correspondence to move along on both sides. When the correspondence
arrives at one of the merging points on the two-contour, it can only connect to a few points on the single
contour before being forced to jump across the merge. This results in the split on the single contour being
placed not exactly halfway between the branches. In Figure 11, this is visible as the front split being more
left than it should. With CSPA, the split line is placed based on an estimation of the ratio of areas of the
two contours, and the ratio of areas in the split contour. This gets the split line close to where it should
be, but not exactly. In Figure 11, we see it has estimated the split line to be further right than it should
be. Perhaps a metric accounting for contour shape to find where the single contour starts to pinch would
be more accurate, but also more sensitive to irregular contour shapes.
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No. of Slices Sampled
Method 10 20 30 40 50

Contour Merging + DTW 0.0727 - 0.0641 0.0605 -
Contour Splitting + Point Angle (CSPA) 0.0685 - 0.0640 0.0607 -

Table 3: Simple branch model, mean Hausdorff distance from original to reconstruction

No. of Slices Sampled
Method 10 20 30 40 50

Contour Merging + DTW 0.0195 - 0.0107 0.0538 -
Contour Splitting + Point Angle (CSPA) 0.0147 - 0.0115 0.0768 -

Table 4: Simple branch model, mean Hausdorff distance from reconstruction to original

For higher plane counts the two methods have almost equal accuracy, with CSPA actually being worse
at 40 plane samples. At a plane count of 10, CSPA is more accurate. The 40 plane sample version has
poor accuracy for both reconstructions. Inspecting the models (See Figure 12), the issue appears to be with
triangulation of the point correspondences, rather than a bad contour correspondence. This may be worth
investigating, to see if this is an input case needing improvement or an implementation error.

(a) DTW (b) CSPA

Figure 12: Simple branch reconstruction error

I follow this up with a model containing only the branch section of the simple branch model. The
complete simple branch model reconstruction and this focussed original model are fed to the Hausdorff
distance filter. Only the forward Hausdorff distance (sampling the from the focussed mesh) is valid here.

Figure 13: Simple branch model focussed on the branch

No. of Slices Sampled
Method 10 20 30 40 50

Contour Merging + DTW 0.0315 - 0.00453 0.00440 -
Contour Splitting + Point Angle (CSPA) 0.0207 - 0.00469 0.00482 -

Table 5: Simple branch focussed model, mean Hausdorff distance from original to reconstruction

This effectively shows the same results as the complete version of the model.
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4.2.3 Multi Branch Reconstruction

A model with multiple branches at different orientations is reconstructed.

(a) Original

(b) DTW 50 planes (c) DTW 10 planes

(d) CSPA 50 planes (e) CSPA 10 planes

Figure 14: Reconstructions of multi branch model

In the branches with correct contour correspondence (the middle and lower branches), we can compare
the point correspondence. In the 50-plane reconstructions, we see similar quality in the middle branch from
both methods. However in the lower branch, CSPA produces a smoother point correspondence. In the
10-plane reconstructions, DTW has bad artefacts in both branches, such as twisting, and too many points
being matched to a single point. CSPA solves these problems, giving better branch reconstructions.

The 50-plane reconstructions show invalid contour correspondence in the top branches. In the 10-plane
versions, entire branch halves are missing from the contour correspondence. These issues affect most of the
multi-branch reconstructions. For the latter reason we will consider only the reverse Hausdorff distance,
from reconstruction to original. Note that this favours CSPA more as its implementation omits some sections
with invalid contour correspondence, and so that section is not sampled from. For this reason we will revisit
a version of this model focussing only on the lower two branches.

No. of Slices Sampled
Method 10 20 30 40 50

Contour Merging + DTW 0.0964 0.0469 0.0320 0.0400 0.0236
Contour Splitting + Point Angle (CSPA) 0.0773 0.0371 0.0157 0.0350 0.0135

Table 6: Multi branch model, mean Hausdorff distance from reconstruction to original

The reverse mean Hausdorff distance indicates CSPA gives more accurate reconstructions of the multi
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Figure 15: Multi branch reconstruction, mean Hausdorff distance from reconstruction to original

branch model than DTW at all plane sample counts. To confirm this is not down to the omissions caused
by the CSPA implementation, we use the focussed multi-branch model. As with the simple branch focussed,
only forward Hausdorff distance is valid here.

Figure 16: Multi branch model focussed on lower two branches

No. of Slices Sampled
Method 10 20 30 40 50

Contour Merging + DTW 0.149 0.0238 0.0134 0.0109 0.00674
Contour Splitting + Point Angle (CSPA) 0.143 0.0175 0.00934 0.0108 0.00497

Table 7: Multi branch focussed model, mean Hausdorff distance from original to reconstruction

These Hausdorff distances show that CSPA either equates with or improves in accuracy compared to
DTW in the lower branching sections, as intended.
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4.2.4 Bend Reconstruction

In this section a bended tube is reconstructed. This tube is oriented so that when scanned, it appears as
two contours coming down to one, similar to a branch.

(a) Original

(b) DTW 50 planes (c) DTW 10 planes

(d) CSPA 50 planes (e) CSPA 10 planes

Figure 17: Reconstructions of bend model

For any plane count on the bend model, CSPA appears to have a cleaner reconstruction than DTW.
This will make it easier to understand the structure when a reconstruction is viewed.

No. of Slices Sampled
Method 10 20 30 40 50

Contour Merging + DTW 0.0764 0.0363 0.0321 0.0314 0.0266
Contour Splitting + Point Angle (CSPA) 0.0647 0.0325 0.0281 0.0296 0.0256

Table 8: Bend model, mean Hausdorff distance from original to reconstruction

No. of Slices Sampled
Method 10 20 30 40 50

Contour Merging + DTW 0.0618 0.0313 0.0158 0.101 0.0752
Contour Splitting + Point Angle (CSPA) 0.0535 0.0173 0.0127 0.0650 0.0491

Table 9: Bend model, mean Hausdorff distance from reconstruction to original

For every plane count, CSPA reconstructions have a lower mean Hausdorrf distance than DTW, both
in forward and reverse directions. Interestingly, the reverse Hausdorff distance is best for both at 30 plane
samples, with worse accuracy as plane samples increase. I suspect this is because as the plane count
increases, sampled contours get closer and closer to the part of the bend which is tangent to the planes.
These contours are shaped more strangely, and both methods have worse accuracy reconstructing these. In
the case of bends, lower plane count may be an advantage, provided the bend is not missed by any planes.
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Figure 18: Bend model, mean Hausdorff distance from reconstruction to original

4.3 Angle Weight Comparison

The point angle metric is a weighted sum of angle and progression for each point. The weighting given to
both may influence how accurate CSPA reconstructions are. We will test this with the simple model and
the multi-branch focussed model.

Angle Weight
No. of Slices Sampled 0% 25% 50% 75% 100%

10 0.0107 0.0102 0.0102 0.0103 0.00998
20 0.00457 0.00431 0.00401 0.00387 0.00380
30 0.00329 0.00304 0.00281 0.00268 0.00264
40 0.00296 0.00253 0.00236 0.00216 0.00216
50 0.00277 0.00234 0.00215 0.00206 0.00204

Table 10: Angle weight comparison on simple model, mean Hausdorff distance from reconstruction to original
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Figure 19: Comparison of accuracy for various angle weights

For the simple model (See Table 10) we can see that for every plane count, higher angle weight produces
more accurate reconstructions. There seems to be diminishing returns on increasing angle weight, so using
an angle weight of about 75% could be a good way to keep some progression weighting, in order to handle
more oddly shaped contours. At low plane counts such as 10, the effect of changing angle weight is lessened.
These trends are just for a simple model synthetically produced, and so may not apply to real data. Robust
behaviour across varying structures is probably more important than optimising accuracy for simpler cases,
and the difference seen here is minimal. We now investigate the multi-branch focussed model.

Angle Weight
No. of Slices Sampled 0% 25% 50% 75% 100%

10 0.146 0.145 0.143 0.143 0.142
20 0.0203 0.0186 0.0175 0.0169 0.0166
30 0.0124 0.0107 0.00934 0.00849 0.00803
40 0.0144 0.0127 0.0109 0.0100 0.00973
50 0.00689 0.00574 0.00497 0.00448 0.00437

Table 11: Angle weight comparison on multi branch focussed model, mean Hausdorff distance from original
to reconstruction

For the multi-branch model, we see similar trends to the simple model. It appears the angle metric can
handle the synthetic branching cases well enough to be better than the progression metric. Again, for more
complicated real contours this may not be the case.
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4.4 Real Lung Scan Reconstruction

Anonymised HRCT stacks are supplied by Dr. Anthony Butler, and approved for research by the Health
and Disability Ethics Committee, Ministry of Health (No. URB/10/EXP/002) [34].

Due to technical difficulties with the implementations, only some parts of the lung were reconstructed,
which unfortunately did not include any branching structures. However we can verify that CSPA gets the
simpler parts correct, by taking a look at the trachea.

(a) DTW (b) CSPA (Proposed)

Figure 20: Real trachea reconstruction, front side

In the scan data, the image resolution is similar to the plane thickness, and so we can see the individual
triangles. Both methods have sufficient accuracy on the front side (Figure 20) of the trachea.

(a) DTW (b) CSPA (Proposed)

Figure 21: Real trachea reconstruction, rear side

On the rear side (Figure 21) we see DTW fail at a section with more irregular contours (there is an
indent which CSPA accurately reconstructs). This is a good indication that point angle may be more robust
than DTW in some instances. Further testing on more real data would be needed to establish whether this
is consistent.
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4.5 Performance

We take a brief look at performance, to validate that even a naive implementation of contour splitting and
point angle correspondence is not unreasonably inefficient.

PC specs:

• OS: macOS 10.13.4

• CPU: 2.4 GHz dual core I5-4258U

• RAM: 8GB DDR3

• Disk: SSD

• C++ compiled with debug flag

No. of Slices Sampled
Method 10 20 30 40 50

Contour Merging + DTW 35 54 92 106 147
Contour Splitting + Point Angle (CSPA) 36 45 70 79 98

Table 12: Time for one reconstruction of the simple model (ms)

Figure 22: Performance of reconstruction methods on simple model

CSPA performs at least as well as DTW, and even performs better as plane count goes up.

Next we turn to reconstruction performance on the multi branch model. 10 plane samples gives the
highest proportion of contour correspondences which are branch cases.

No. of Slices Sampled
Method 10 20 30 40 50

Contour Merging + DTW 44 65 94 115 140
Contour Splitting + Point Angle (CSPA) 29 44 58 90 104

Table 13: Time for one reconstruction of the multi branch model (ms)
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Figure 23: Performance of reconstruction methods on multi branch model

In the branching cases, CSPA splits contours into separate point correspondences, and each correspon-
dence has linear complexity relative to contour size in points. Mackay’s implementation with merging creates
larger contours for DTW to act on. Filling in the cost matrix gives DTW quadratic complexity relative to
contour size in points, assuming they are proportionally sized. The slowdown for DTW relative to CSPA,
especially at low plane count where the proportion of branching cases is higher, can probably be attributed
to this.

On the real dataset, DTW took an average of 88 seconds for a reconstruction, whilst CSPA took 83
seconds. Both implementations have some naive elements, but this is a good indicator that CSPA does not
have any major flaws with regards to performance. It handles larger contours (on the order of hundreds of
points) about as well as DTW.

4.6 Analysis Summary

CSPA gave more accurate reconstructions than DTW, particularly in branches and similar structures, with
few exceptions. As plane count lowered for a given object, CSPA’s accuracy worsened at a rate slower than
DTW’s. This can be useful for reconstructing small objects. Also, there may be image stack data which has
incomplete contour data (missing contours). In cases where contour correspondences traversing multiple
slices are allowed, CSPA may handle the larger gap better. Averaged across all models and plane sample
counts, CSPA improved on DTW by an average of 15.2%. Averaged across all models with 10 sample planes,
there was an improvement of 17.5%.
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5 Conclusion

This paper proposes a new method for handling branching cases in point correspondence, and a new point
correspondence algorithm. Contours are split in branching cases, and angle/progression metrics are used for
point correspondence. The intent was to more deliberately choose key points in the point correspondence
process (where splits occur, where correspondence starts from etc.). Synthetic models had contours sampled
from them, to be reconstructed by the proposed method and the most comparable prior method by Mackay
involving Dynamic Time Warping. The reconstructions were compared to the originals, with Hausdorff
distance providing an accuracy metric. It was found that the proposed method on average handles branching
cases better, especially at lower plane sample counts. Averaged across all models and plane sample counts,
CSPA improved on DTW by an average of 15.2%. Averaged across all models with 10 sample planes, there
was an improvement of 17.5%. The proposed method may provide an improvement for real applications
with many branching cases and small objects, such as lung scans. The improvement in visual quality should
help with understanding scanned structures, and the improvement in mesh quality and accuracy may help
with further processing steps.

5.1 Future Research

Contour splitting is currently implemented to handle 1-to-2 cases. However the idea is simple enough to be
generalised to 1-to-many. In addition, the ratio of areas can be explicitly calculated instead of approximated
by number of points. This may cope with real contour shapes better. The split line curve can be modelled
differently depending on factors such as how close the two contours are. For point correspondence, metrics
other than point angle and progression can be considered.

Absent from the analysis was a reconstruction of a real branching structure. With a fixed contour corre-
spondence, a comparison between DTW and CSPA (and other non contour-based reconstruction methods)
on real lung scans would be useful. An alternative would be to implement the synthetic lung model gener-
ation by Pluta et al. [27]. Sample planes could then be taken from this model and reconstructed, to allow
for analysis on a more realistic structure than the models used in this paper.

Other ideas include:

• Contextual constraints on contour correspondence. For example, the lung bronchi should form a tree
when corresponded.

• Contour interpolation to reduce the difference between contours before point correspondence.

• Triangulating branches as overlapping 1-to-1 cases, then merging the meshes produced.
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